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Preface to the first edition

Space and time are the two most fundamental concepts in our world

because all else is unimaginable without assuming that space (or time)
exists. It is therefore not surprising that the sophisticated Euclidean

model of space already existed more than 2000 years. For centuries it

was a common belief by scientists and philosophers alike that the Eu-

clidean structure of space was one of the very few eternal truths. It

was only at the beginning of the 20th century that this belief was shat-

tered with the introduction of Albert Einstein’s theories of special and

general relativity. Today, Einstein’s theory of general relativity is com-

pletely established, and there are many textbooks which explain it at

all levels of mathematical sophistication. What is missing, however, is

a modern textbook on general relativity for mathematicians and math-

ematical physicists with emphasis on the physical justification of the

mathematical framework. This book aims to fill this gap.

Knowledge of physics is not assumed. While physical and heuristic

arguments are given, they are not used as substitutes for any proofs. The

book is also suitable as an introduction to pseudo-Riemannian geometry

with emphasis on the intuition for geometrical concepts.

The physical theme of the book

Modern textbooks on general relativity typically start with a more or less

formal introduction to pseudo-Riemannian geometry. In such textbooks

some knowledge of special relativity is usually assumed, and the reader

is expected to accept the geometrical framework presented on trust. This

approach is very economical but obscures the extent to which classical

general relativity succeeds in describing our universe, and also where it

may fail. This is a point that is of particular relevance to those attempt-

ing to quantise gravity. Rom a physical point of view it is important to

realise which parts of the theory reflect genuine physical insights, and

which are dispensible. One way this can be achieved is through a criti-

cal introduction that stresses foundational matters. There are no modern

textbooks taking this approach, and I hope to fill this gap with my-book.
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One of the most exciting aspects of general relativity is the predic-
tion of black holes and the Big Bang. Such predictions gained weight
through the singularity theorems pioneered by Penrose. In various text-

books on general relativity singularity theorems are presented and then

used to argue that black holes exist and that the universe started with

a big bang. To date what has been lacking is a critical analysis of what

these theorems really predict-’ We give a proof of a typical singular-
ity theorem and use this theorem to illustrate problems arising through
the possibilities of "causality violations" and very weak "shell crossing
singularities". These problems add weight to the point of view that the

singularity theorems alone are not sufficient to predict the existence of

physical singularities.

The mathematical theme of the book

In order to gain both a solid understanding of and good intuition for any
mathematical theory, one,should try to realise it as a model of a famil-

iar non-mathematical concept. Physical theories have had an especially
important impact on the development of mathematics, and conversely
various modern physical theories require rather sophisticated mathemat-
ics for their formulation. Today, both physics and mathematics are so

complex that it is often very difficult to master the theories in both sub-

jects. However, in the case of pseudo-Riemannian differential geometry
or general relativity the relationship between physics and mathematics

is especially close, and it is therefore possible to profit from an interdis-

ciplinary approach.
Euclidean geometry had its origins as the description of shapes in

physical space. It is generally considered a mathematical discipline rather

than a physical theory, because it is possible to derive it from a small set

of physical postulates, which can alternatively be viewed as mathematical

axioms. Since the concept of space is basic to our everyday experience,
Euclidean geometry combines mathematical rigor with intuitiveness -

a combination which has proved to be extremely fruitful for both math-

ematics and physics. Riemannian geometry is abstracted from the study
of surfaces in Euclidean space and inherits much of the intuitiveness of

Euclidean geometry. Hence Riemannian geometry is very well developed,
and a growing number of geometers have branched out to Lorentzian or

even pseudo-Riemannian geometry. In my experience, these fields (and

Since I had written this passage a review article (Senovilla 1998) which

has a very similar theme has been pointed out to me. This article pro-
vides many very illuminating examples of spacetimes as well as discussions

which reinforce our sceptical approach towards the physical interpretation
of singularity theorems.
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even Riemannian geometry) appear quite abstract to the majority of

students.

A careful analysis of space, time, and free fall - the most funda-

mental (classical) physical concepts - leads almost automatically to

Lorentzian geometry. With respect to Lorentzian geometry, we are there-

fore in a similar situation as ancient geometers were with respect to

Euclidean geometry. What’s more, virtually no physical background is

required for this approach. Since Riemannian geometry comes to play in

the study of submanifolds representing an instant in time, it is completely
straightforward to extrapolate pseudo-Riemannian geometry from the

special and physically motivated cases of Lorentzian and Riemannian

geometry.
While some modern textbooks present pseudo-Riemannian geometry

(and general relativity) to mathematicians (an example of this is that

by O’Neill (1983)), they have not motiv,ated the geometry from basic

properties of space and time. Instead they have developed it as an ab-

stract mathematical theory. To ensure that the mathematical description
mirrors the physical concepts, all definitions have a justification in this

book. This approach also leads to a careful treatment of the structural

aspects of the mathematics.

How to read this book

This book is not designed so that it is necessary for the reader to start

at page 1 and then to read on until she or he arrives at page 424. People
who take this approach will very likely give up before they reach page
14! The material is ordered in such a way as to allow the text to be

used as a reference source. It is an unfortunate fact that many parts of

the theory that logically belong to the preliminaries are not of imme-

diate interest to a reader who is interested in space and time, and so

the reader is urged to follow the guides in the margins, which provide
a shortcut. As an example, the text in the margin denotes the begin- P. 111 1

ning of a passage belonging to the shortcut: p. 111 denotes the page
-2

number where the last shortcut passage ended and p. 222] the page
[I p. 222]

number where the present passage will end. Additional explanations in

the footnotes are indicated by --->2, where 2 refers to the number of the

corresponding footnote. The end of shortcut passages is marked simi-

larly. Having understood the material leading to Einstein’s equation it

is then not difficult to return to the parts that have been skipped on

an earlier reading. In addition, hints are -given at the beginning of most

sections as to what is important and should be read
.

’

Explanations referring to the guide in the margin.
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This book, with its 424 pages is meant to cover both general relativity
and pseudo-Riemannian differential geometry. It is therefore clear that

some important topics had to be omitted.

For mathematicians, the most important omissions are certainly some

topics peculiar to Riemannian geometry, such as the Hopf-Rinow the-

orem (O’Neill 1983, Theorem 5.21) and the Myers theorem (O’Neill
1983, Theorem 10.24). Because these results are contrary to intuition

one should obtain for Lorentzian (or general pseudo-Riemannian) geom-

etry and since they are not needed for the description of space and time,

they have been omitted from this book.

Physicists may find that the presentation of this book is only loosely
linked to other physical theories. This loose linkage is possible since the

theory of space and time is fundamental to any other physical theory.
The book is therefore accessible to mathematicians and physicists alike.

Physicists who are interested in applications to astrophysics may wish to

consult the book by Weinberg (1972). Weinberg’s approach is opposite
to the one used in this book, and personally I believe that it should

ideally be read after the reader has a solid knowledge of the conceptional

aspects of relativity as presented in this book. Most other books on

general relativity also present the "Kerr solution", which is supposed to

model the exterior of a rotating black hole. It has been omitted since

it is not essential to unders,tanding general relativity. Moreover, it is

well described in other books. People interested in this solution should

probably first read Chap. 12 of the book by Wald (1984). The purely
mathematical aspects of this solutions are clearly presented in O’Neill’s

book (1995).
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1. Local theory of space and time

This book is not meant to be read in the order the

material is presented. Please follow the guide in the

margins or skip material as proposed in the italic text

at the beginning of most sections.

In this chapter we will develop those aspects of space and time which
P*

1

can be locally observed, say in a laboratory. We will start with Euclid’s U p. 3]

description of space and then incorporate time in to the picture. The

path we take is rather historical. It starts with intuitive but surprisingly

complicated concepts (Newton’s theory of absolute space and absolute

time) and ends with the not so intuitive but mathematically simpler

theory of special relativity. The guiding principle of this book will not

be mathematical simplification, but the solution of problems occurring
in earlier theories.

The mathematical description in this chapter seems to be global and

leads to extrapolations which are not validated by any experiments and

which are not generally true. In the following chapters we will take up this

point again, and show that the description given in this chapter should

be considered infinitesimally rather than globally. This is the theme of

the book.

1. 1 Space

In this section we consider space and introduce Euclidean geometry. This

material is assumed to be familiar to the reader and is therefore presented
in a rather concise way.

Readers who wish to learn the essentials of the theory of space and time

quickly and do not mind skipping some mathematical proofs can use the

guide in the margins.

ute
M. Kriele: LNPm 59, pp. 1 - 1, 1999© Springer-Verlag Berlin Heidelberg 1999



1. Local theory of space and time

1.1.1 Affine space

In this section we introduce affine space as our most elementary de-

scription of space. Affine space is just R' where the special properties
of 0 E R7 are ignored.2

It is a basic experience that we can uniquely describe any point in space

by three real numbers. This seems to be the idea of Descartes (1637)
who developed analytic geometry as an example of his Discours de la

M6thode. While it is therefore plausible to identify R3 with (physical)
space, R3 contains a distinguished point 0 whereas space apparently does

not. Hence by using R
3

as a description of space we introduce a math-

ematical structure which has no physical counterpart. This would lead

to constructions which cannot be realised in space. For instance, there is

the unique negative of a vector v e R
3 but there is no way to assign the

negative to a point in space. As another example, addition of vectors has

no direct interpretation in terms of points in space. If we want to have a

reliable description of space with the property that all phenomena exhib-

ited in this description are mirrored by physically verifiable phenomena,
we have to abstract from these additional structures.

We will now isolate those structures of R3 which have an intuitive

meaning in terms of space. Given two points x, y we can construct an

arrow v which points from x to y. This arrow induces a map from space to

space. We just move the arrow (without rotating) such that its untipped
end coincides with a given point z. The point z is then mapped to the

tip of the arrow. It appears that - as long as we don't rotate v - this

definition is independent of the path which we use to move v from x to

z. In R3, this parallel transport is just given by the map Ry-x: R3 ---> R3,
z  -4 z + y - x. Observe that y - x stands here for the arrow v which is

not a point. Thus the geometric interpretation is different from a simple
addition of vectors. In order to separate the concepts involved we define

the concept of real affine space.

We do not yet know what "rotating" should mean in mathematical

terms - so far we have simply a physical picture in mind. However, the

following definition (for the n-dimensional case) reflects some properties
of our naive notion of parallel transport and does not introduce any

additional properties. The set of points is denoted by A'.

Definition 1.1.1. An n-dimensional real affine space is a set A' and

a collection fRv: A' --> A' : v E Rnj of bijective maps such that the

following holds.

N R,+,, = R, o R,, Vv, w G Rn,

2 Readers who already have some knowledge of manifold theory (cf. Chap. 2)
and connections (cf. Sect. 2.6) can take affine space to be the usual R7

considered as a manifold together with the flat connection.
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(ii) for all x, y E A" there exists a unique v,,,y c R' such that

Rvx,, (x) = y.

We denote R,(x) by x + v or v + x and v.,,Y by y-x or x--y'.

We will see below that this definition is so restrictive that it does not

allow for more affine spaces than there are vector spaces.

Remark 1. 1. 1. Of course, space is 3-dimensional. We work with general
dimension n for several reasons. Firstly, most of the theory we will be

developing does not depend on the dimension - with the exception of

a key-result whose proof, however, is too complicated to be presented in

this book (cf. Theorem 5.3. 1). Secondly, it is often convenient to compare

the theory with lower dimensional analogues which are easier to visualise.

It is therefore advisable to formulate it in a way which encompasses these

analogues and also shows the restriction of the analogy. Thirdly, there

exist modifications of Einstein's general theory of relativity to higher
dimensions ("Kaluza-Klein theories").

Another way to generalise the theory would be to allow for complex
vector spaces as well. We refrain from doing so since the main result of

Section 1.1.2 only holds for affine spaces over R.

Note that for x E An, u, v c R' the associative law

x + (U + V) = (X + U) + V

holds. It is easy to see that all n-dimensional real affine spaces are

isomorphic, and can be realised by R' in the following way. Choose

any o E A' and define 0,,: An -- R', x F-+ Oo(x) = vo,x. Now iden-

tify An with 0,, (A' and define for x E OO(A'), v c Rn the bijection

Rv(x) = oo(Rv(oo- (x))). Clearly,  x,,y = Observe that

these definitions are independent of the arbitrarily chosen point o. Con-

[ [P_  31we can recover the structure of R' by iden- 7versely, choosing an o E An 1]

tifying o with the zero vector 0.

1.1.2 The fundamental theorem in affine geometry
and doubly ruled surfaces

In this section we present some results of affine geometry which will

be needed in the proof of Theorem 1-4.1. This section is very technical

and should be omitted on first reading.

Let o, xj,..., xk E An and a',..., ak E R such that Ek a' = 1. Then
j=1

1 kthe barycentre with masses a a

3 Section 1.1.2 is needed for the proof of Theorem 1.4.1 which is central to our

interpretation of the Michelson-Morley experiment. However, the reader is

strongly advised against reading this part now.
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k

alX,+a2X2+ - - - +akXk : `::: 0 + E a (xi-0),
i=1

is independent of o and therefore an affine invariant. The symbol + is

defined via the right hand side and can only be applied to "linear com-

binations" where the real factors add to 1. An affine subspace Bof A'

is a set of points fx 1 2 k Ek i
a Xl+a X2+ +01 Xk :

i=1
a 1, where

X11 ... 7 xk are pairwise different, fixed points. The affine dimension of B

is k - 1. It follows that an affine subspace is an affine space. An affine

subspace of dimension 1 is called an affine line. We call points lying on

a single line collinear. Observe that lines are the smallest sets which are

invariant under parallel transport.

Lemma 1. 1. 1. Let x, y, z E An. Then x, y, z lie on an affine line if and
only if there exists a A E R such that x == y + A(z-y).

Proof x lies on the line generated by y, z if and only if there exists an 0 G

R with x = Oy+(l -O)z = y+O(y-y) + (1 -0)(z-y) = y+ (I -0)(z-y).
I

Definition 1.1.2. An affine map is a map f: A' -4 An, f(x) =

A(x-o) + b, where A is a linear map, o E An, and b c Rn. If A is

bijective then f is called an affine transformation.

J,A collineation is a bi ection f : An -- A' which maps any three

collinear points into collinear points.

Consider a line 1 and three points X 1) X2 i X3 on 1. Then the number A

given by X3 -X1 = A(X2 -X1) is denoted by

X3-XI

X2-XI

The following lemma is the classical theorem of Thales. It will be used in

the proof of the fundamental theorem in affine geometry (Theorem 1.1.1

below).

Lemma 1.1.2. Let H1, H2, H3 C Rn be parallel hypersurfaces and 1 be

a line which intersects these hypersurfaces. Let xi(l) = Hi n 1. Then

X3(l)-XI(l)

X2(l)-X1(l)'

does not depend on 1.

Proof. Denote by R the subspace of Rn which is the associated vector

space to the affine space H1 (and since H1, H2, H3 are parallel also to

H2, H3). We consider the quotient space AnIft defined by
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x-y ifandonlyif y-xEfl.

This space has a natural affine structure with associated vector space

Rn/fJ given by ir (x) - 7r (z) = Jf(x-z) where 7r,  f denote the projections

to the equivalence classes. We have

7r(X3(l))-7r(X1(l)) ::_-';f(X3(l)-X1(l))

Jf
X3(l)-Xl(l)

(X2 (1) -XI (1))(X2(l)-XI(l)
X3(l)-XI(l)

 f (X2 X 1

X2(l)-Xl(l)

-

X3(l)-Xl(l)
(7(X2 (1)) - 7F (X 1 (1)))

X2 (1) -X1

which implies that

X3 (1) -XI Ir (X3 (1)) -7r (XI

X2(l)-XI(l) 7r(X2 (1)) -IT(X1 (1))

only depends on the projected values. Now it is sufficient to observe

that ir(xi(l)) is independent of I since all points in Hi are equivalent:

x, y E Hi ==> 7r (x) = 7r (y). I

It is easy to see that all bijective, affine maps are collineations. Con-

versely, the fundamental theorem in affine geometry asserts that any

collineation must be affine:

Theorem 1.1.1. Let A' be an affine space over R with n > 2 and fix
0 E A. Let f : An --+ An be a bi ection which takes each three collinear

points into collinear points. Then there exists a point b E An and an

invertible linear map f such that f(x) = f(x-o) + b for all x E An.

The proof is elementary but lengthy and requires some preparatory lem-

mas. We will follow (Berger 1987, p. 52-55) where one can also find a

version of this theorem which holds in the complex case. Observe that

the following proof makes heavy use of the assumption n > 2. The the-

orem does not hold for n = I since in this case any map maps collinear

points into collinear points.

kLemma 1. 1.3. Let o, x,.... iXk E An, f be a collineation, A A E

R, and

k

nx==o+EA'(xi-o)EA
i=1

Then there exist fil.... I Ak E R such that

k

fW = f(o) + E Ai ff (xi)-f(0)) -

i=1
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Proof. For k = 1 the claim is clear by the definition of a collineation.

Assume now, the assertion is true for all m 1, . . . ,
k - 11. For

M+1 M

X = 0 + Ai (Xi-0) let X, = 0 + Ai (Xi-0).

Then we have

X = X/ + Am+, (XM+1 -0) (1.1.1)

and by induction hypothesis there are real numbers y' p" with

f(x') - f(o) = Eim. 1 M" (f (xi) - f(o)). We define also

Y = 0 + A'+'(xm+,-o), (1.1.2)

z = Y+ X

2 2

The triples I z, x', y1, 1 y, o, xm+ 1 1, and fz, o, xI consist each of collinear

points. This is clear for the first triple and follows from Lemma 1.1.1

for the second triple. To see this for the third triple observe that y-o =

x-x1. z =
1
y+

1x' is the centre of the parallelogram defined by o, y, x, x'
2 2

and therefore the intersection of the line connecting y with x' and the

line connecting o with x. Since each of these three triples consists of

collinear points there exist a, 0, -/ such that

f (Z) = af(X')+ (I - a)f (y),

fW = Of(o)+ (I - O)f (z),

f (Y) = f(o)+-Y(f(x.+i)-f(0)).

This implies

fW = Of(o)+(I - O)f (Z)

= '3(f (0) - f (0)) + (I - 0) (f (Z) -f(0)) + f(0)

(I - '3) ((afW)+(I - 00f (y)) -f(0)) + f(0)

(I - )3) (c, (f (x') -f (o)) + (1 - a) (f (y))) + f(o)
M

/i
0) (01 A (f (Xi) -f (0))

+ (I - a)-Y(f(X-+1) - f(0))) + f (0)
M+1

= E 'U (f (Xi) -f (0)) + f (0) -
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Lemma 1.1.4. Let o, xl,. Xn E An such that fX1 -0i ... iXn-01 is a

basis of R'. If f is a collineation then ff(xi) -f(o), ... if(Xn)-f(O)j is

also a basis of R'.

Proof Let -3- E An be any point and let x = f Since fxl-o,... 7 Xn-

ol is a basis of Rn there exist  ' E R such that x-o = Enj I V(xi-o).
Lemma 1.1.3 implies that there exist pl,...' n

E R such that

k

: - f(0) = fW - f(0) = E A (f(Xi)-f(0)) -

j=1

Since 1-- was arbitrary the assertion follows.

Lemma 1.1.5. A bijection f is a collineation if and only if it 'Maps

affine lines onto affine lines.

Proof. Let x, y E An and denote by 1 the line spanned by these points.
Let i be a point on the line spanned by f (x), f (y). We have to show

that z = f-'( ) G 1. If this was not true than the vectors z-x,y-x

would be linearly independent. But then Lemma 1.1.4 would imply that

f(z) -f(x), f (y) -f(x) where linearly independent as well. Contradic-

tion to the construction of  = f(z) I

Lemma 1.1.6. Let f be a collineation. Then f maps parallel lines into

parallel lines.

Proof. Let 1, 1 be two parallel lines (which do not coincide - otherwise

there would be nothing to prove). Since they are parallel they span a

plane P rather than a 3-dimensional subspace of An.

This plane is mapped into a plane P'. In order to see this consider

a line i such that the lines 1, i intersect and span P. It is clear that any

line which intersects both 1 and i is contained in P. Moreover, any point

y E P lies on a line I which intersects both I and 1. Let P' be the plane
generated by the (intersecting) lines f (1) and f (1). f (y) lies on the line

f (1) which intersects f (1) and f (i). Hence f (T) (and therefore f(y)) lies

in P'.

Having established that f(P) is a subset of a plane we only have to

show that f (1) n f (1) = 0. If there was a point z c f (1) n f (1) then f-'(z)
would lie in both 1 and V which is impossible since both lines are parallel.

I

Lemma 1. 1. 7. Let k: R ---> R an automorphism, i. e., k (ao) = k(a) k ( 3)
and k(a +,3) = k(a) + k (,3) for all real numbers oz,,8. If k 7 0 then k = id
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Proof. k (0) = k(0 + 0) = k(0) + k(0) implies k (0) 0. Assume, there is an

a  4 0 with k(a) = 0. Then k(o) = k(oz)k(ola) 0 for all 0 and k must

vanish. Hence k(a) =A 0 Va 34 0. k(l) k(l 1) = k(l)k(l) implies

k(l) = 1. By induction we obtain k(n) n for all natural numbers.

k(-n) k(O - n) = k(O) - k(n) = -k(n). Similarly, we have k(l/n) =

1/k(n) 1/n. For n, m E Z we have now k(n/m) = n/m and the lemma

is proved for all rational numbers. a < 0 implies k(a) :5 k(,3) since for

any positive number 7
2
we have k(-y2) = k(-y)k(-y) > 0. Let now -y be any

number. Then there exists a monotonically increasing sequence ai --> 'Y

of rational numbers and likewise a monotonically decreasing sequence of

rational numbers Oi ---> -y. Hence ai = k(ai) < k(-y) < k(0j) = Oi which

implies k(-y) = -y. I

Observe that this lemma would be false if we had replaced R by C as

z i-->. would be a counter example. This is why theorem 1.1.1 (as stated

above) is not true for affine spaces over the field C.

Proof of Theorem 1. 1. 1. Let f: R' ---> R', v  -4 f(v) = f(o + v) -f(o).
The idea of proof is to construct an automorphism k: R --> R such that

f(Av + I-tw) k (A)f (v) + k (y)f(w) holds for all A, M G R and v, w c R'.

We will use constructions based on parallel lines in order to represent

vectors such as v + w, (A + A)v, Attv. Since f maps parallel lines into

parallel lines (Lemma 1.1.6) these constructions will be preserved by f
and can therefore be used in order to prove linearity and multiplicativity
of f, k.

We will first show that fis additive.

f

 (o+(o + W)
o + V + W

(o + V + W)

f(0)----Ie- f(lo + V)

Fig. 1.1.1. Additivity of f

Let v, w E R' and consider the lines 1,, 1w spanned by o, o + v and

o, o + w. The point o + v + w is the intersection of the parallel translation

of 1w that contains o + v and of 1, that contains o + w (cf. Figure 1. 1. 1).
Since parallel lines are mapped into parallel lines we know that f(o +
v + w) is constructed analogously from f (o), f (o + v), f (o + w). Hence

f(V+W) = f(o+V+W)-f(o) = f(o+V+W)-f(0+V)+f(o+V)-f(o) =
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f (o + w)-f (o) + f(o + v)-f(o) = f(w) + f(v). Here we have used the

fact that the vectors connecting f (o) with f(o + w) and f(o + v) with

f (o + v + w) are identical since they correspond to opposite sides of a

parallelogram in a plane.
Now we show that there is a well defined automorphism k: R --> R

such that f(Av) = k(A) f(v) for all v E Rn and A E R. We first fix a vector

v and consider the line 1 through o spanned by v. Denote by gi: 1 --> R

the map o + AV  --> A and by gf (1) the map f(o) + ttf(v) i--> /-t. Since f
maps the line through o which is spanned by v into the line through f(o)
which is spanned by f(o + v) -f(o) the map k: R R is well defined

through the relationship f(Av) = k(A)f(v). From

f(o) + k(A) f(v) f (o) + f(Av) f(o + Av) f (gi '(A))

we see that k is given by k(A) = gf (1) o f o gi
1
(A).

f

/,00- f(0 + W)

WO+W
AV 0 + AV + [tv

f(0)

0 + /,V
f (*0AV

0 + ttv
f(0 + AV)

f(0 + /,tv)
, X"0 + AV f(0 + AV + /-tV)

Fig. 1.1.2. Additivity of k

In order to prove additivity of k we use the fact that (A+M)v = Av+,uv
can be constructed using parallel lines (cf. Figure 1.1.2) Let w E R' be

linearly independent from v and consider the triangle defined by the

points o, o + w, o + Av. This triangle can be parallely translated so

that the point o is mapped into o + /-tv. (We simply parallely translate

the lines generated by its sides as indicated in the figure). Since this

translation preserves the vectors defined by the sides of the triangle we
have obtained a geometric construction of the point o + Av + Aw. Since

this construction only employs intersection points and p  rallel lines it is

preserved by the map f .
Hence we obtain f((A + /-t)v) = f(Av) + f(ttv)

k(A)f(v) + k(p)f(v) and therefore

k(A + p) = gf(1) o f o gi
1
(A + /-t) == gf (1) o f (o + (A + tz)v)

= gf (1) (f(o) + f((A + tt)v))

= gf (1) (f (o) + k(A) fi(v) + k(M) f(v))
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gf (1) (f (o) + (k (A) + k(p)) f(v)) = k(A) + k (y).

f

f(0 + W) f 1(o + AW)

o + AW

W
(0

0+W
f(0)

w

0 + A[IVA> o4

(o + V)f(o + V)
f(0 + A/,tV)

f (0, + /\V)
f(o+

0 + /_tV
f (o + AV)

+ \v
f ()o'+U Vlf(0 +

'v0+

0 + AV f(0 + pv)
0

-

0 + V01+ V

Fig. 1.1.3. Multiplicativity of k

The proof of multiplicativity is similar and employs a slightly dif-

ferent geometrical construction (cf. Figure 1.1.3) which is justified by
Lemma 1.1.2. The configuration in the first part of Figure 1.1.3 lies in

a plane whence hypersurfaces are simply lines. Denote by H2 the line

which connects o + v with o + w, by I-I, its parallel translation through

o, and by H3 its parallel translation through o + Av. Further denote the

line through o and o + v by 1 and the line which connects o with o + w

by 1'. Using the notation of Lemma 1.1.2 we have

A
(0 + AV)-0 X3(1)-X1(0

(0 + V), 0 X2 (1) -X1 (1)

Hence Lemma 1.1.2 implies that the intersection of H3 and 1' is really

o + Aw as depicted in the figure. We apply this lemma a second time

where the three parallel hypersurfaces H2, H1, H3' are now given by the

line connecting o + /-tv with o + w, its parallel translation through o, and

its parallel translation through o + Aw. It follows that the intersection

of H3' with 1 is o + y(Av) o + A/-tv. Since this construction only em-

1 loys intersections and parallel lines it is preserved by f and we obtain

f(Apv) = k(A)k(p)f (v). This implies

k(Att) = gf (1) o f (o + Aix) = gf (1) (f (o) + &yv))

= gf (1) (f (o) + k(A) k (y) f(v)) = k(A) k (y).

Hence k is really an automorphism of the real line. One can geo-

metrically show that this automorphism neither depends on v nor on

o. However in our case this automorphism is trivially well defined since
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we already know that the only non-zero automorphism of R is the iden-

tity. This also implies f (,\v) = \f (v) for all X E R, v E Rn
-
Hence the

theorem is proved. I

We will now turn our attention to special subsets of affine space which

become important in the proof of Theorem 1.4.1.

Definition 1.1.3. Let U C R2 be an open set and x: U --, An be a

C' map such that at each point (s, t) E U the differential Dx(s, t) is

injective. Then x is called an immersed surface. If x is also injective
then it is simply called a surface.

A surface should be envisaged by its image, a two-dimensional, smooth

subset. An immersed surface may have self-intersections.

Since lines have such a fundamental meaning in affine geometry, sur-

faces which are generated by lines are of special interest..

Definition 1.1.4. A ruled surface is a surface which can be parametri-
zed by a function of the form x(s, t) = c(s) + tw(s). Such a parameteri-
sation is called a ruling of the surface.

Fig. 1.1.4. A ruled surface

Example 1.1.1. The simplest ruled surfaces are those which admit two

different rulings.

(i) A trivial example would be any plane.

(ii) A slightly more sophisticated example is given by the rotational

hyperboloid. Let c(s) == (COS(S), Sin(S), O)T be the unit circle in

R' and consider Xhyp(S,t) = C(S) + t(6(8) + (0, 0, I)T). Clearly, x

is a ruled surface and explicitly given by Xhyp(S,t) = (COS(S) -

t sin(s), sin(s) + t COS(8), t) T. Since it satisfies the equation (xl P)2 +hy

(X2 P)2 - (X3 P)2 = I it must be a rotational hyperboloid. The samehy hy

surface is described by -Zhyp (8 7 t) = C(S) + t(_6(8) + (1, 0, 0) T) which

is a different ruling.
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(iii) A third example is given by the hyperbolic paraboloid. Let

c(s) = (s, 0, 0)
' and w(s) = (0, 1, ks)T. Then Xpar(S7 t)

v
 1 +1_k1-28-2

c(s) + tw(s) satisfies kxlarx2ar = X3ar and Xpar parameterises a
p P p

I
hyperbolic paraboloid. We can interchange x and A to ob-

par par

tain a different ruling of the same surface, ;r-par (8) t) = (0, S, 0)
T
+

I (1,0,kS)T.

Theorem 1.1.2. Let M C A' be a surface which admits two different

rulings. Then - up to an affine transformation - M is a subset of

either a plane, a rotational hyperboloid, or a hyperbolic paraboloid.

Proof. It is easy to see that any surfaces M C A' with two rulings can

locally be embedded into A'. One just has to consider -a line 11 of the

first ruling which intersects a line l' of the second ruling. Choose another
2

line l' of the second ruling which also intersects 11. Then all three lines
3

span a 3-dimensional affine subspace. At least locally, any further line of

the first ruling must intersect both l' and l' whence it is contained in
2 3

the same affine subspace. Since M is generated by the lines of the first

ruling we have proved the assertion.

Fig. 1.1.5. Proof of Theo-

rem 1.1.2 - first case

If there are any two generators of the first ruling which lie in a plane

then the ruled surface must be this plane. Hence we can assume that any

two generators are linearly independent. There are now two possibilities.

Either there exist three generators which are all parallel to a single plane

or any three generators are linearly independent.
In the first case let 111 12,13 be different generators of the first ruling

which are all parallel to a single plane. We can now find linear coordinates

 XI ,X2,X31 such that the x1-Axis coincides with 11 and the x2-axis is

parallel to 12. By choosing the origin appropriately, 11 is given by x
2
=

X
3
= 0, 12 by x1 = 0, x = a', and 13 is given by x

3
= a2, X1 +a3X2 = 0,

where a1,a2,a3
E R. Let P be a two-plane which contains 11. Then there

exists an s E R such that P is given by x
2
+ SX3 = 0. Any generator V

of the second ruling which is contained in P must intersect both 12 and

13- We obtain for the intersection points:
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Fig. 1.1.6. Proof of Theo-

rem 1.1.2 - second case

2 1 3
==

1.
jPn12j: X = 0, X a s, X a

,

1
=

2 3 2 2 3
=

2

jPn13j: X a a 8, X a s, X a

It follows that 1' has the parameter form

0 a2a3s

1/ -als + t -S W _ al) : t ER

al a2 _ al

Since the ruled surface is generated by such these lines 1', we have ob-

tained a parameterisation (s, t)  --> x(s, t) of it. Eliminating the param-

eters s, t we obtain xlx3
= -a3a2 2, whence the surface must be a

hyperbolic paraboloid.
For the second case we choose linear coordinates fx1, x2, X31 such

thatthe X3-Axis coincides with 13 ,
the X2-axis is parallel to 12, and the x1 -

axis is parallel to 11. We can chose the origin 0 of the coordinate system

such that it lies in 13 and such that 12 lies in the plane X3 0. Then

there exist numbers al, a2, a3 C R such that 13 = JX : X1 X2 = 01,
12 = fX : X1 = a', x3 = 01, and 11 = fx : X2 = a2,X3 = a3 1. Let P be a

plane which contains 13 and is not parallel to X2 = 0. Then there exists

an s c R such that P is given by x1 - sx
2
= 0. Any line 1' of the second

family which lies in P must intersect 11 and 12- We calculate

2 2 2 3 3
JP n 111: x1 = sa

,
X a

,
X a

I
=

1 2
=

a
1

3
fP n 121: X a

,
X

,
X = 0.

This gives the line

a' a' - sa
2

alls + t alls - a
2 tGR

0 -a
3
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It follows that (s, t) are parameters of the ruled surface. If we eliminate

(s, t) we obtain the equation

-a3X1X2 + a
2xIx3 _ a1x2x3 + a

I a3x2
= 0.

This is a quadric. We could use the Gram-Schmidt-procedure to show

that this quadric is affinely equivalent to a hyperboloid. But since any

quadric in R3 is affinely equivalent either to the sphere (X1)2 + (X2)2 +
(X3)2 = 1, the two-dimensional pseudo-hyperbolic space, - (x1)2 +
2)2+ (X3)2 2

+ (X2)
2

+ (X3)
2

X = 1, the rotational hyperboloid, - (x')(
- 1, the cone (X1)

2

+ (X2)
2
_ X3 = 0, the hyperbolic paraboloid - (XI)

2

+

(X2)2 _ X3 == 0, or a plane, we can infer without any further calculation

that our surface must be affinely equivalent to a rotational hyperboloid.

1.1.3 Euclidean geometry

Euclidean geometry gives the local model of space. In the following
sections we will obtain models of space & time which incorporate Eu-

clidean geometry as description of space. Unless otherwise stated, here

and in the following space has dimension n - 1. We assume that Eu-

clidean geometry is known to the reader and therefore only summarise

a few facts.

In affine space, we have no definition for "length" or "angle". Since these

are fundamental concepts for our perception of space, we must endow

affine space with an additional structure. The first scientific and ex-

perimentally well tested description and axiomatisation of space involv-

ing these notions culminated in the "Elements of Euclid" (ca. 340b.C.-

270b.C.). In modern terminology, Euclid's theory of space can be iden-

tified with Euclidean geometry.
The central object of Euclidean geometry is the scalar product.

Definition 1.1.5. A scalar product on a real vector space V is a map

V x V --+ R (1.1.4)

(u,v) F-4 (U,V)

such that for any u, v, w E V, A, It c R the properties

(i) (U ,
Av + AW) = A  u, V) + U (u, W),

(ii) (u, V) =  V, U),
(iii) (u, U) > 0,

OV)  u, U) = 0 == > U = 0

hold.
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We can now define an Euclidean space as an affine space equipped with

a scalar product.

Definition 1.1.6. An Euclidean space is a pair (A", where

(i) A " is the (n - 1) -dimensional, real affine space with associated

vector space R
n- 1,

(") (*C)R1-1 is a scalar product on R".

A map 0: An' --> An-1 is an isometry if and only if

 O(Yl)-0(X1)i 0(Y2)-0(X2))R71-1 :--::  YI-Xli Y2-X2)Rn-1

for all Y1) X1 7 Y2 7 X2 c: An-1

The physical notions we wish to capture with our mathematical def-

initions are "distance" and "angle". The distance between two points

x, y E A` should only depend on the connecting vector u = y-x.

It is plausible to demand that the distance of x and x + \u is X times

the distance between x and x + u. Hence, given a scalar product, the

definition dist(x , y) X-Y Rn-1 := V(X_y1X_y)R11-1 seems to be a

reasonable choice.

It is clear, however, that in order to measure the angle between two

vectors one needs a map Rn x Rn --> R which is symmetric in both

entries and remains unchanged if one of the vector is multiplied by a

real number. The angle between two directions u, v may therefore be

defined by Z (u, v) = arccos
(U,V)R"-l( IIUIIR"-l 11V11R11-1

It is not a priori clear that a scalar product is indeed the appropriate

additional structure for defining lengths and angles. See (Weyl 1923, 19)
for a theoretical justification of the usage of scalar products.

Proposition 1.1.1. A map 0: An-1 __ An-1 leaves the Euclidean struc-

ture (An-1, (7 *)RII-1) invariant if and only if there exist a linear map

A: Rn-1 -4 Rn- ' and points o, b E An- I such that V)(x) = A(x-o) +b
[p. 14 1]

and (Au, Au)R11-1 :=  U) U)Rn-1 for all u E R".
-4

Proof. Observe first that an application of  Au, Au)R11-1 :-- (U7 U)R11-1 for

I p. 16

all u E R
n-1 to the vector u = v + w implies (Av, Aw) R11 - I

= (V I W) R11 -

for all v, w c R
n-1

.

Hence the map x t--> O(x) = A(x-o) + b satisfies

 O(Yl) - 0(X1)i0(Y2) - 0(X2))R11-1

(A(yi-o) - A(x1-o), A(Y2-0) - A(X2_o))R11-1
= (A(y, - x1), A(Y2 - X2))R11-1
= (Y1 - X1, Y2 - X261-1 *

In the proof of Proposition 1.1.1 we appeal to Theorem 1.1.1.
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Conversely, any map V) which preserves the Euclidean structure preserves
in particular the affine structure. Hence Theorem 1. 1. 1 implies that there

is a linear map A and a point b such that O(x) = A(x-o) + b for all

x E A. Since 0(y) - O(x) = A(y - x) it is clear that A must satisfy
 Au, Au)R,,-' = (ul U)R,,,-' for all u c R".

P.

Remark 1.1.2. At first sight our definition of a Euclidean space may
seem to be too general. The reader may feel that in space there is a

subset of physically distinguished scalar products:
Let e be a vector which we use as measuring stick defining unit length

and E a plane which contains el. Using a pair of compasses we can

construct a line 1, C E which is orthogonal to el and therefore also

a vector e2 of the same length as el but perpendicular to el. We may
now construct a second plane E,, by rotating,e-2 around el and a third

plane E,, by rotating el around e2. The intersection E,1 n E
e2

is a

line orthogonal to el and e2. Using again or pair of compasses we can

construct a third vector e3 which is of unit length and orthogonal to el

and e2- Our distinguished scalar product is now given by (ei, ej)R3 = 6ii'
It follows from the Theorem of Pythagoras that the length of a vector

u is given by  JUIIR3- We can use a pair of compasses to approximately
(but arbitrarily well) divide the circle into a fixed number of arcs thereby
introducing an approximate measure of angle. From the definition of the

cosine it is clear that (up to a constant factor depending on the number

of arcs) the size of an angle is given by the definition above.

However, this introduction of the standard scalar product is based

on procedures which are intuitive but which cannot be defined in mathe-

matical terms without having a scalar product in the first place. In fact,
if we had started with any given scalar product (., -) and had defined

(i) a rotation as a linear map which leaves the scalar product invari-

ant and

(ii) a pair of compasses as a device which for each given plane E

containing a given vector e produces all vectors e' c E with the

same length as e,

then using our construction we would just have recovered The fol-

lowing proposition gives a mathematical explanation of this fact.

Proposition 1.1.2. Let (An-1, (*1')R"1-1) and R11-1) be two

Euclidean spaces. Then there exists an affine map 0: A'-' -, An-1

which satisfies

(O(Yl) - V)(X1)i'0(Y2) - V)(X2))R11-1 =  Yl - X1) Y2 - X2 R-l

for all X1i Yli X21 Y2 E An-1.
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Proof. Choose any points o,b E A'-' and let lei,..., e,,_11 (respec-

tively be an orthonormal basis with respect to (-)R11-1)

(respectively 1) -
We define the linear map A by A i = ei. Then

the affine map O(x) = A(x-o) + b is the desired isomorphism.

The map 0 is often referred to as an Euclidean transformation.

Corollary 1.1.1. Let  *) *61-, be a scalar product of Rn-1. Then there

is a basis lei, en-11 of Rn-1 such that  ei, ej )RI-1 = 6ij, where

6ij
I for i = j,

0 otherwise

is the Kronecker symbol.

Today, Euclidean geometry is-often taught as a prime example for a

closed and consistent mathematical theory. This obscures the fact that

angles and distances are physically measurable and that therefore Eu-

clidean geometry can be falsified as a physical theory. (For instance,

one of the most influential philosophers since the time of enlightenment,

Kant (1781), wrongly considered space as given "a priori").
In modern times, Carl Friedrich GauJ3 (1777-1855) seems to have

been the first to realise the possibility that Euclidean geometry may

not be the correct description of our world - though the legend that

he tried to verify Euclidean geometry by measuring the angles between

three mountain summits is not true (Osserman 1995, page 66). He has

developed a non-Euclidean geometry in which the parallel axiom does

not hold but did not publish it. This geometry was also independently

discovered by the Hungarian mathematician Jdnos Bolyai (1802-1860).
Later in this book we will conclude that space should be described by

geometries which are far more general than those considered by GauB

and Bolyai.

1.2 Absolute space and absolute time

In this section we present the "naive" model of space and time. We

will take care to show how complicated it really is. We will also give
a short account of Newton's theory of particles which is the main

physical justification of this spacetime concept.

Time seems to have striking similarities with space but nevertheless to be

something which is very different. Like space time is a continuum. How-

ever, space is a 3-dimensional continuum while time is 1-dimensional.

Moreover, we can freely move in space but merely drift in time. It is
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-----------_-------
--------------

movement inovement

in tirrie in space-

time
tP1

t--------

Fig. 1.2.1. A curve in

spacetime diagram

often practical to treat space and time in a unified manner. For instance,
spacetime diagrams are used to describe movements (cf. Fig. 1.2.1).
Hermann Minkowski (1864-1909) (Minkowski 1909) has pointed out that

nobody has ever experienced space without time or time without space.

This observation is borne out by characterising space & time in the

following way.

Definition 1.2.1. A primitive spacetime is set. The points of a space-

time are called events.

Of course, this definition does not tell anything about the relation of

space and time or even allows to distinguish between these concepts.
In order to do so we must supplement the primitive spacetime with a

geometrical structure.

In the preceding section we have recalled that space can well be

described by (n - I)-dimensional Euclidean space. The fact that time

is I-dimensional indicates that spacetime can be considered as an n-

dimensional affine space which is foliated by (n - I)-dimensional sub-

spaces each of them carrying a Euclidean structure. Any foliation with

affine hyperspaces corresponds to a linear map T: R' -4 R, where x, y E

A' are in the same hyperspace if and only T(x-y) = 0. Denote by
Ex = fy E An : 7-(y-x) =: 01 the affine hyperplane through x and let

o'o/ E An. Then the vector spaces associated with all these affine hyper-
planes E., (x E An) are identical. In fact, they are given by -F-1(0) =

fv E Rn : -r (v) 0 1. Hence we only have to specify one single Euclidean

scalar product .),-, (0)
on the vector space -r-

1 (0) in order to get a

foliation of (n - l)-dimensional Euclidean spaces. This is in accordance

with our experience that the geometry of space does not change from

one instant of time to another.

The map -r can be interpreted as a world clock: The time difference

between to events x and z is just T(z - x). Observe that T is uniquely
defined up to a factor. This factor corresponds to the physical unit in

which time is measured.

We still need to link events in different hypersurfaces which corre-

spond to the same point in space. The simplest way to do so is to intro-
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duce as a second structure a vector t and interpret all points lying on the

line x + Rt as the same point in space at different times. If we normalise

t by -r(t) =- I then the time difference between x and y = x + tt is just t.

Definition 1.2.2. A Newton spacetime is a quadruple

(An, t',r' (1.2.6)

where t E Rn is a distinguished vector, -r: R' --- R a linear map such that

,r(t) = 1, and (., -),_ (O) is a scalar product on the vector space 7-'(0)..
This definition is just the content of Isaac Newton's (1642-1727) theory
of absolute time and absolute space.5

Fig. 1.2.2. Absolute space, abso-

lute time

We see that spacetime is fibred twice, By lines parallel to t and by

hyperspaces of the form E,+tt where o is some fixed event. This structure

may appear quite cumbersome but it captures our naive point of view

in a geometrical way.

One can think of t as defining a time axis and therefore an absolute

notion of rest, and think of -r as defining an absolute notion of instant

of time. The pair (-r, t) induces a projection -:: R' -->, R', v 1--* 6, where

v = A +V and -r(,U) = 0.

A map which leaves the structure of a Newton spacetime invariant

consists of a spatial Euclidean transformation as given in Proposition
1.1.2 and a spacetime translation.

Proposition 1.2.1. A map V): A' --+ An leaves the Newton spacetime

(An, t,,T, (.' invariant if and only if there exist a linear map

A: -r-
1 (0) -4 -F-

1 (0) and points o, b E An such that

(i) O(x) = A(x-o) + T(x-o)t + b and

(ii) (Au, Au),-, (0)
=  u, u),-, (0) for all u E T_

1 (0) -

5
In the next section we will discuss an improved spacetime model which is

named after Galileo Galilei who lived before Newton. The reason for this

is that Calilei emphasised different points than Newton, points which are

more important to us nowadays. However, what will be referred to as a

Galilei spacetime also incorporates ideas due to Newton.
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Proof It is easy to check that maps of this form are isomorphisms of New-

ton structures. Conversely, observe that any affine map '0 which maps

any affine hyperplane E,, into some affine hyperplaneE,,, is necessarily
of the form

O(x) = A(x-o) + -F(x-o)v + b

where A is a linear map of T
- 1 (0) into itself, v E R'* and o, b c A'.

That A satisfies (Au,Au),-,(O) = (u,u),-,(O) for all u E -r-'(0)
follows from Proposition 1.1.1 and the fact that 0 restricted to Ex is an

isometry of Euclidean spaces.

Since the vector t is an invariant of the Newton spacetime the equa-
tion o+t-o = t implies 0(o+ t) -0(o) t and therefore (-r (t)v + b) -b

t. But this equation is equivalent to v t.

Observe that the choice of o is irrelevant, it can always be absorbed by
b.

We call the set of all isomorphisms 0 of the Newton spacetime the

Newton group JV.

Given a Newton spacetime we can find a basis lei,. .., e,,J of R' with

respect to which T = (1, 0, .
t = (1, 0, 0) T, and (u, v) (0)

En-
I

6ijuiVi.i,j=i

1.2.1 Non-relativistic particles

Here we very briefly indicate elementary aspects of Newton's theory
of particle mechanics. We will only touch on those features which are

necessary for later sections. This section is included for the benefit of
mathematicians.

A particle is thought to be a small material object without interior or

exterior structure. This is of course a gross idealisation of many macro-

scopic objects, but for some purposes surprisingly good. Billiard balls

are typical examples. On the other hand, one cannot neglect the internal

structure of a football. It will be noticeably deformed when hit. This

contributes to its springiness and at the same time shows that the par-
ticle model is not adequate. An American football has a shape which

contributes to its movement when it rolls on a flat surface. Again, a

particle description would be a bad approximation.
Newton observed that even if all its structure can be neglected, a

material object does carry a parameter which characterises its move-

ment in spacetime. This parameter is its mass.
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Definition 1.2-3. A non-relativistic particle with mass m is a pair
(m,,y) where m E R+ and -y: t  --> - (t) G An satisfies T( (t)) = 1. The

curve -y is called its world line in spacetime. '

It has been first expressed by Galilei (cf. Sect. 1.3) that under ideal

conditions a particle which is not subjected to any external force moves

7along a straight line.

Definition 1. 2.4. A non-relativistic inertial particle is a non-relativistic

particle (m, 7) which satisfies  = 0.

It is clear that a non-relativistic particle is inertial if and only if -Y(t)
x + t(t +  Y) for some point x E A' and some constant vector U with

7('Y) = 0.

Of special interest to us are collisions of inertial particles. We un-

derstand under a collision of particles any interaction of them which is

confined to a compact subset of spacetime. It is best to think of collisions

in the sense of colliding billiard balls. But we explicitly allow that par-

ticles break up or stick together. Since the collision is confined in space

and time it is possible to speak in connection with a collision of incoming
and outgoing inertial particles. Let (Tni, ^ i)i=1,_k denote the incoming
inertial particles and (m , the outgoing inertial particles. Then3 7 
the following laws are experimentally well justified.'

(i) Conservation of mass. I:k 1 Mi
= El M,

i= i j,

I:k(ii) Conversation of spatial momentum. Mi7i M/.,Yfi=1 3

(iii) Conservation of kinetic energy.

k
1

1
1

/E
2
Mi oli"07_1(0) = 1:

2
Mi( j,

i=1 j=1

It is easy to see that these laws are invariant with respect to isomor-

phisms in the Newton group A(.

It is clear that most particles do not move along straight lines. In

this case an external force must act on the particle in order to force it

to take a different path.

Definition 1.2.5. A (time dependent) force field _P is a map F: An

7-1(0).

We only need -r( (t)) > 0 in order to guarantee that the particle moves into
its future. The normalisation -r( (t)) = I synchronises each particle with
the world clock t.

7
It is not absolutely clear whether Galilei really meant straight lines or more

complicated curves which take into account the shape of the earth.
8 These laws are intimately linked to the homogeneity of space and time. This

is the content of the Noether Theorem. For further details cf. any textbook
on (theoretical) mechanics,
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In a given force field f a particle -y moves according to the differential

equation

my= F. (1.2.7)

In particular, vanishing force implies that -y is an inertial particle.
According to the physical interactions under consideration a particle

may also carry a variety of other parameters besides m. As an example
consider an electrical field f : A' ---+ -F

- 1 (0). Every particle (m, -y) carries

another parameter q which determines the force with which the electrical

field acts on the particle, f = qf.

1.3 Galilei's theory of relativity

In this section we drop some of the structure of Newton spacetime in

order to arrive at Galilei's theory of relativity. We also argue that his

theory was revolutionary given the paradigms of the time.

Galilei's theory of relativity has been motivated by cosmology. We do

not feel that the earth moves into any preferred direction. It is therefore

plausible to believe that the earth is at rest and that all objects at the

sky are moving around it: The sun rises in the East and during the course

of a day moves to the West, and there are analogous descriptions of the

movements of the moon and the stars. It was already well known that

planets are not moving along strictly circular orbits. In the traditional

cosmology of the Greek astronomer Claudius Ptolemeaus (ca. 100-160)
this was accounted for by an elaborate construction using epicycles.

It was a revolutionary act of Nicolaus Copernicus (1473-1543) to as-

sert that the sun is the centre of the universe and that the earth is moving
around the sun just like any other planet or star (Copernicus 1543). He

did so in order to arrive at a model in which movements would be theo-

retically more uniform and which would therefore be in better accordance

with the teaching of the ancient Greek philosophers Pythagoras (ca. 570

b.C.-500 b.C.) and Platon (ca. 428 b.C.-347 b.C.) (cf. (Kanitscheider
1984)). However, his model was not only technically more complicated

(using more epicycles than Ptolemeaus) but also encountered a number

of serious problems.

(i) If Copernicus was right one should be able to discover a parallaxis
effect at the sphere of fixed stars. If the fix star sphere and the

earth rotate both around the sun with different velocities, then one

should observe different angles a, 0 between two neighbouring stars

according to the time of the year. (Cf. Fig. 1.3.1).
(ii) Some passages in the bible seem to contradict the theory of Coper-

nicus. In particular, it states that Joshua stopped the sun for a few

hours. This statement would not make sense if the sun would not

have moved before.
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(iii) The model of Copernicus is inhomogeneous. While all planets circle

around the sun the moon definitely moves around the earth. No

other exception was known. According to Ptolemeaus, every object
in the sky moves around the earth. Hence the traditional system

seems to be more homogeneous on a large scale and therefore to be

advantageous.

(iv) The laws of mechanics seem to contradict Copernicus' hypothesis.
Imagine a stone falling from the top of a tower. Since the tower

(being fixed to the ground) would move together with the earth,
one would not expect the freely falling stone to hit the ground at

the foot of the tower. However, exactly this is everyday experience.

(Cf. Fig. 1.3.2).

Fig. 1.3.1. Parallaxis effect Fig. 1.3.2. Tower example

Problem (i) has been addressed by Copernicus himself. He just assumed

that the sphere of fixed stars is so large that the parallaxis effect cannot

be measured. Ironically, the true radius is orders of magnitudes larger
than the radius he proposed. (He was just concerned with making the

effect unobservable). The other three objections have been answered by
Galileo Galilei (1564-1642) some 60 years later.

Calilei was least successful with Problem (ii). While he could quote
church authorities (for instance, Aurelius Augustinus (354-430)) to the

effect that one should not interpret the bible literally when it comes to

questions of physics, the establishment remained unconvinced. One of

the reasons has been the fear to set a precedence. If people started to

doubt any part of the writing they could as well start to be sceptical
about other parts which are closer to the main doctrine. Hence there

was a major threat to the whole building of Christian belief. The theory
of Copernicus was put on the index and Galilei - after having written
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a brilliant but rather defiant semi-popular book (Galilei 1632)9 on the

matter - was sentenced to house arrest. He obtained this comparatively
mild punishment after a public but insincere abdication of his scientific

assertions.

Galilei solved Problem (iii) by careful observation (Galilei 1610). The

telescope had just been invented and Galilei was one of the first to use it

as a scientific tool. He observed that the planet Jupiter also has moons

and used this observation to show that the cosmological system of Ptole-

meaus of the universe was not more homogeneous than the system of

Copernicus. On the other hand, since it was believed that beyond the

moon the world was filled with a medium very different from air, many

philosophers doubted the accuracy of the telescope. They claimed there-

fore that it was doubtful that the telescope which was acknowledged
to work well on earth could be trusted when applied to the position of

planets. Galilei argued that the telescope was accurate with respect to

all the known phenomena in the sky and that it was therefore justified

to use it as a scientific tool.

Galilei solved Problem (iv) by asserting a law of inertia which asserts

that a constant movement had no influence on physical processes. Galilei

supplemented this law with the important physical assertion that com-

plicated velocities can be decomposed into simpler ones. According to

this law the stone would keep its initial tangential velocity while falling
down and therefore come to rest at the foot of the tower - regardless

of the velocity of the earth. It can be argued that this solution of the

problem was the most revolutionary act in natural sciences and started

physics as a scientific discipline in the modern sense. Recall that every-

day experience seems to point against Galilei's law of inertia: If we set

a wagon into motion it will certainly come to a stop after some while.

Moreover, there was a generally accepted physical theory by Aristotle

(384 b.C.-322 b.C.) which explained this experimental fact. (The wagon

has an initial impetus which is responsible for the movement and which

is used up during the motion.) Galilei gave many examples to make his

law of inertia plausible and to show that it is a law for a limiting case

without friction. For instance, he claimed that a stone falling from the

mast top of a smoothly sailing ship would also reach the ground at the

foot of the mast-10

9 This book is a literary and physical master piece. Even today it is well worth

reading!
10 As compelling this example may appear to us, at the time there were some

good reasons to doubt it. Since the velocities involved are rather small it

would be difficult to verify Galilei's claim experimentally. Also, while the

ship moves wind is blowing into the same direction. it is conceivable that the

stone is just blown to the right position. (To value the merit of such counter

arguments one has to be aware that at this time, good, quantitative physics
has not yet been available). Some of these arguments have already been

answered by Galilei, who, for instance, circumvented the wind argument by
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Galilei realised that his law of inertia is not compatible with the

notion of absolute rest. Instead he postulated a fundamental principle of

relativity.

Postulate 1.3.1 (Galileian relativity). For any two observers which

move relative to each other with constant velocity all physical processes"
are the same.

It follows that the vector t in the definition of Newton spacetime which

defines absolute rest does not have a physical meaning. (It is another sign
of the originality of Galilei that Newton thought he had to re-introduce

a concept which had already been shown to be superfluous).
While we have lost the notion of absolute space we can still retain

absolute time. Spacetime is then fibred by hyperplanes t const and we

obtain the following simpler structure of sPacetime.

Definition 1.3.1. A Galilei spacetime is a triple

(An, T, (., .)
,
_  (0) ) , (1.3.8)

where 7-: Rn -- R is a non-zero linear map and is a scalar

product on the vector space T-1(0).

.40.00.."M

Fig. 1.3.3. Relative space, abso-

lute time

The linear map -r defines a world clock by defining 7-(y - x) to be the

time difference between to events x and y - exactly as in the Newtonian

model presented above. In contrast to Newton's spacetime we do not have

the vector field t at our disposal and therefore there is no absolute rest

space. We have replaced "absolute space" by a distinguished family of

"inertial systems" or "inertial observers". The notion of "Rest" can only
be defined relative to an "inertial observer":

Definition 1.3.2. Let (An,,F, (., .),-,(0)) be a Galilei spacetime.

(i) A non-relativistic observer is a curve 7: t -> -y(t) E An such that

'T ( M) = I
-

claiming that the physics in a cabin of a smoothly sailing ship would be

exactly the same as on earth.

Strictly speakingl'he only considered mechanical processes.



26 1. Local theory of space and time

(ii) A non-relativistic inertial observer -y is a curve of the form
-/(t) == x + tt, where t E R', -r(t) = 1.

(iii) A non-relativistic observer y is at rest with respect to a non-

relativistic inertial observer -y(t) = x + tt if A(t) t.

Hence given a non-relativistic inertial observer 7(t) x + tt we obtain

a splitting of spacetime into space and time relative to -Y. Physically,
this amounts to regarding the observer -y as being at rest. We can also

interpret t as a relative time axis. Relative to the non-relativistic inertial

observer -y we have thus recovered the structure of a Newton spacetime.
Notice, however, that this is only possible by arbitrarily distinguishing
one non-relativistic inertial observer. This motivates the following defi-

nition.

Definition 1.3.3. Let t E R' be a vector with T(t) = 1. The pair (t, -F)
is called a non-relativistic reference frame.

For any given reference frame (t, -F) we obtain a map R' F-+ Rn- I

via the unique decomposition v =  Y + A where -F(V) = 0.

Proposition 1.3.1. A map 0: An --+ A' leaves the Galilei space-

time (An',r' invariant if and only if there are a linear map

A: T-1(0) ---> T (0), a vector v G Rn, and points o, b cz An such that

(i) O(x) = A(x-o) + -r(x-o)v + b,

(ii) T(v) = 1, and

(iii) (Au, Au),-,(O) = (u, u),-,(O) for all u Cz T-1(0).

Proof. It is straightforward to check that maps of this form are isomor-

phisms of Galilei spacetimes. Conversely, observe that any affine map 0
which maps each affine hyperplane E,, into some other affine hyperplane
E,,, is necessarily of the form

O(x) = A(x-o) + T(x-o)v + b

where A is a linear map of T
- 1 (0) into itself, v E R' and o, b c An.

Since V) preserves r we have -r(O(x)-O(o)) = T(x-o) for all x, o E

A'. Hence we obtain

,T (A + b-b) = -r(x-o)-F(v) = 7-(x-o)(X - 0) + T(X-O)V

which in turn implies -F(v) = 1.

The third property follows since A must preserve the Euclidean scalar

product I

The Galilei group 9 is the group of maps which leaves the Galilei space-

time invariant.



1.4 Einstein's special theory of relativity 27

It should be noted that the Galilei spacetime is compatible with

Newton's theory of particles as described at the end of Sect. 1.2. The

Galilei spacetime was well accepted as the correct model of space and

time for more than 200 years. However, in the 19th century a theory of

electro-magnetism emerged which, together with this spacetime model,
was incompatible with Postulate 1. 3. 1. Still, scientists continued to think

that the postulate would hold for mechanical processes.

1.4 Einstein's special theory of relativity

We start with a discussion of the fundamental Michelson-Morley Ex-

periment which indicates that the velocity of light has an absolute

value c. These findings indicate that the set of all possible light rays

form a further invariant of nature. We will see that this leads to the

structure of a Minkowski spacetime (Theorem 1.4. 1), or, equivalently,
to Einstein's special theory of relativity. We use the results from the

two preceding sections to show that there is no need for additional

structures in spacetime. In Sect. 1.4.2 we give a short discussion of
some consequences of special relativity such as the "Twin paradox"

(which, of course, is not paradoxical at all).
The proof of the fundamental Theorem 1.4. 1 requires section 1. 1. 2

to
ti t2

Fig. 1. 4. 1. A flash of light at times to = 0,

t17 t2

In the 17th century two important properties of light emerged.
In 1676 Olaf R&mer discovered that the velocity of light is finite. He

did this by noticing that the there was a yearly oscillation in the periods
of the moons of Jupiter.

The Dutch physicist Christian Huygens (1629-1695) developed a

wave theory of light (Huygens 1690). In a very superficial way, we may

view light as an analogon to water waves.12

The following two paragraphs should not be taken too seriously by the

reader. We give an overly simplified version of the wave theory of light
- just enough in order to understand the Michelson-Morley experiment
presented below. Moreover, today the theory of quantum electro dynamics
provides a much deeper understanding.
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In water waves each "drop of water" individually moves in a cir-

cle thereby inducing a similar movement (with a small time delay)
of neighbouring drops. All these moving drops together form a wave

(cf. Fig. 1.4.2) Since each drop is influenced by the neighbouring drops
these time delays accumulate and the whole wave seems to move. If two

different waves meet then (in a very rough approximation) they sim-

ply linearly superpose each other.13 This will result in a characteristic

(and often complicated) pattern, the "interference pattern". In partic-

ular, this superposition will result in a much larger wave if both waves

are synchronised and in the other extreme they may cancel,

Diffraction experiments indicate that this crude picture qualitatively
also applies to light for which, however, matters are mathematically sim-

pler. Again using a very rough model, one may think of the electrical

field E at each point as oscillating up and down with respect of a fixed

direction. The influence of neighbouring points gives rise of to a wave

as described above. The wave length \ is the distance between two con-

secutive maxima and very small. It specifies the colour of light. If two

waves are superimposed then the result may be brighter if they are syn-

chronised. In the other extreme, the waves may even cancel altogether if

the setup is arranged such that maxima and minima (of the same size)
are superimposed. In this case the result is darkness. (cf. Fig. 1.4.3).

In order to explain the wave nature of light one used to believe that

space is filled with a substance called "ether" which plays the same r6le

as the water for the water waves. An important problem would then be

to determine the movement of the earth with respect to the ether.

Fig. 1.4.2. A wave consisting of linked os-

cillations

Since the velocity of light should not be directionally dependent, in

the non-relativistic reference frame connected with the ether a flash of

light should propagate in concentric spheres (cf. Fig. 1.4.1). The cor-

responding picture in spacetime would be a cone. To be more precise,
consider the non-relativistic reference frame of the ether, given by the

pair (t, -r). Let o be the event at which the flash of light is emitted and

For water waves, this linear superposition is in fact a rather bad approxi-
mation.
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Fig. 1.4.4. Future light
cone and Galileian rela-

tivity. The observer mov-

ing with spatial velocity V

measures a different centre

OV of the flash of light and
therefore different radii di,
d2 for its wave front

E,, = Ix G An : -r(x-o) = 01 be the instant of time defined by o. We

have a foliation fEo+ttjtGR of An with spatial hyperspaces. Each vector

v can be uniquely decomposed into spatial and temporal components,

v == -r(v)t+V where -r(,U) = 0. A light ray which is sent out at x C EO with

the spatial velocity 6 describes the curve o, + R(t + cl in An
.
Hence with

respect to a reference frame fixed to the ether a flash of light corresponds
to the future light cone

CO+ =  y C- An : IICI12_1(0)(,T(Y_O))2 = 7- (Y-X) - > 0 Y_01 Y-0 I - I))7-1(0)
in spacetime. The fact that the field x  --> C: = C + X-0 of fu-

ture light cones are not invariant with respect to Galilei transformations

(cf. Fig. 1.4.4) would enable one to measure the reference frame of the

ether, Le, the movement of the earth with respect to the ether. This was

the aim of Albert Abraham Michelson (1852-1931) and Edward Williams

Morley (1838-1923) (Michelson 1881), (Michelson and Morley 1887) in

their famous interference experiment (cf. Figs. 1.4.5, 1.4.6). A light ray

is partially reflected at a half silvered mirror H. The part of the light

ray which is not reflected at H is reflected at a mirror M and then par-

tially reflected at H before reaching the observer 0. The part of the ray

which is immediately reflected at H is reflected by a mirror M' and then

(partially) passes through H to arrive at the observer 0. The distance

between M and H is 1 whereas the distance between H and M' is 1'.

Both light rays have the same intensity when they arrive at 0. Here they

produce an interference pattern which allows to measure the difference

Fig. 1.4.3. Superposition of waves
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0

11 H H,," HMMUlamp H H H11
lamp H 1 M

0 

M/ M, MIMI

Fig. 1.4.5. Michelson-Morley ex- Fig. 1.4.6. Michelson-Morley ex-

periment, at rest relative to the periment, moving relative to the
ether ether

of the distances which each light ray has travelled (Here one makes use

of the fact that the wave lengths of visible light are extremely small

and that the superposition effect allows to measure the distance which

a light ray has travelled at an accuracy of half a wave length). Since the

laboratory is at rest with respect to the earth, according to Galileian

relativity the interference pattern should depend on the angle between

HM and the velocity of the earth. Let c (E R+ be the modulus of the

velocity of the light in the ether,  Y be the velocity of the earth relative to

the ether and assume first that HM 11  Y (cf. Fig. 1.4.6). The first part of

the light ray will travel from H to M, in time tj and cover the distance

ct, == 1 + jjVjj,-1(0)tj. If it travels from M to H in time t2, it will cover

the distance Ct2 :--= 1 - jj'Ujj-r-1(O)t2- These equations imply

tl + t2 7--

1

21/c
(1.4.9)

_ 11,U112,r_,(O)IC2
'

The other part of the light ray travels in time t' from H to M' and in

the same time back to H, thereby covering the distance

2ct' 2 1/2 + Jjyjj2_j(0)tj2.
This gives

2t'
21'1c

(1.4.10)
(0)

C2

We are interested in the time difference zAt = 2t- (tl +t2) for both paths.
Since the number I I  61 I , - 1 (0) Ic is very small we only need to calculate the

time difference to second order in I JUj Jr - 1 (0) 1c.

I - 11 1 - JjUjj2_1(0)1C2
At = tl + t2 - 2t' ---

2
-

1 11,6112

Ir

C
Ir
_I (0) /C2
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.j(jj,yjj2_j(0)/C2)j/ _ j/21+ 2 7'

C I - 11,611 2(0) /C2
-r

jj (_1 + j(jjyjj2_j(0)/C2 + jjjyjj2_j(0)/C2j2 2 2

C Jjqj2_j(0)/C27'

2

(jj (_1 +
1

(jjUjj2_j(0)1C2) +
1

jjUjj2_j(0)1C2j
C 2 2

X (I + jjUjj2_j(0)/C2)T

1 11,U112 -1(0) 2JI I 11,UI12_1(0)
C C2 C

+
2 C2

where 1' 1 + J1. This gives a displacement per wave length A of

JJV112
zAZI1 =

C, At
::Z 

2

(0) 2JI
I + 21(o)

A A C C ( 2 C ) -

It follows that the interference depends crucially on the length difference

51 which cannot be measured accurately enough. In order to overcome

this difficulty Michelson and Morley turned the whole setup by 7r/2 and

measured the interference difference. For the rotated setup we must set

,At = 2t' - tj - t2 and interchange 1, 1'. An analogous (but in the details

slightly different) calculation gives

C At 1 jjqJ2_1 (0) 2(-61)
zAZ -Z -

7'

+_L
A

,

A C2 C C2

The relative displacement depends on 61 only up to second order and is

given by
ljqJ2 1(0)

AZ = AZI, - AZ_L
21

2
1 - 61)A C 1

If one assumes that the sun rests relative to the ether, uses the Hg

spectral line with A -zz 5.461. 10-'Om and has I   21m then one would

obtain AZ ;:  0.4 which is well in the range which can be observed.

However, all such experiments had a negative outcome.

A possible explanation of this negative outcome is that the earth rests

with respect to the ether. But the earth circles around the sun which it-

self rotates in our galaxy. Since in the course of the year the earth changes
its velocity direction relative to these other velocities, it is inconceivable

that all year round the velocity of the earth relative to the ether can be

neglected. Another explanation would be that light moves like particles
and that therefore Galileian relativity would apply to light as well. Since

the light was from earth bound sources and the observations have been
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made on earth, this assumption would explain the negative outcome of

the experiment. The Michelson-Morley experiment has therefore been

repeated using star light - again with negative results. Now one could

argue that as soon as the starlight is reflected at mirrors fixed to the

earth, the light reflected light should be viewed as being produced on

the earth. This would explain even negative results for star light in the

framework of Calileian relativity (Hasse 1995). While this explanation is

conceivable, it would demand a new theory of reflection. It is much sim-

pler to assume that the velocity of light is independent of the movement

of its source. This is the traditional interpretation which we will adopt
in this book. It has been given further support by many consequences

of the resulting theory (for instance, the possibility of obtaining huge
amounts of energy from nuclear fission and nuclear fusion).

Since our interpretation of the experiment of Michelson and Morley
is in contradiction to Galilei's theory of relativity we have to reconsider

the foundations of spacetime. In order to do so we start with our new

insight about the nature of light propagation, i.e. that the set of possible
future light cones is an invariant structure of spacetime. Here and in the

following we will chose units such that c = 1. (In the SI-system, one has

c = 2.99792458 - 108M/S.)

Postulate 1.4.1 (Invariance of the future light cones).
Spacetime can be identified with An together with an invariant

field of future light cones C = C + x-o, X E An.

We start the investigation of this postulate, by first determining all maps
which leave this future light cone structure invariant. To simplify the dis-

cussion we choose again a non-relativistic reference frame (-r, t) and de-

note by (-) the induced projection of Rn to -r-
1 (0). Defining the bilinear

form

770: Rn x Rn -4 R, (u,v) i-4,q(u,v) = --F(u)-r(v) +

we can write

C n
: 77(y-x, y-x) = 0 and C1 y E Cx : -r(y-x) < 01..,

= ly E A
X

We call Cx the light cone and Cx- the past light cone at x. It is clear that

a transformation which leaves the field of the future light cones invariant

must also leave the field of light cones x  -* Cx invariant. The bilinear

form qo is a Minkowski metric as defined below.

Definition 1.4.1. A Minkowski metric 77 is a constant bilinear form on

Rn with signature (-, +, ..., +).14

14 This means that there is an "orthonormal basis" as defined directly below.
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A basis Jeo,..., en-11 of R' is called an orthonormal. basis with re-

spect to q if 77(eo, e,) = -60,, and i7(ej, ej) = 6ij for all i, i E tl,.. -,
n -

11, a E f0,. ..,
n - 11.

A Lorentz transformation is a linear map L: Rn -- R' such that

,q(u, v) = q(Lu, Lv) for all u, v E Rn. The set of all Lorentz transforma-

tion is the the Lorentz group and denoted by O(n, 1).

It is now easy to find a class of maps which leave the light cone structure

invariant. Let a E R \ 101, b G Rn, 0 E An, and 0: Rn Rn be given

by O(x) = aL(x-o) + b. It is immediate that O(Cy) CO(y) for all

y E Rn and that therefore the transformation 0 satisfies our invariance

requirement. The following theorem due to Alexandrov (1950) implies

that all isomorphisms are of this special form.

Theorem 1.4.1. Let n > 3 and 0: Rn --+ Rn be a bijective map such

that 0 and 0 map lightlike vectors into lightlike vectors, 77 (x- y, x-y) =

0 = > ?7(0(x)-O(y), O(x)-O(y)) = 0 and analogously for 0'. Then there

exist an L E O(n, 1), an a E R \ 101, an 0 E A', and a b E Rn such that
TP--TT]

O(x) = aL(x-o) + b for all x E An. - 5
1
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There are several proofs of this result. For instance, Benz (1992) shows

that the theorem follows from the fundamental theorem of Laguerre ge-

ometry. We will follow Alexandrov (1975) who gave a particularly elegant

proof. His proof rests on results in affine geometry which have been given

in Sect. 1.1.1.

Proof of Theoreml-4-1. Let y E Q,. Then 77(y-x,y-x) = 0 and by

assumption q(O(y)-O(x),O(y)-O(x)) = 0. The last equality implies

0(y) G Ck(x) and therefore that 0 maps generators of the light cone

Cx into the light cone C,6(,,).
Now assume that P is a two-plane which intersects C., in two genera-

tors lx lX. We will show that O(P) is also a two-plane. Since for any y 1.,

the cone C. intersects P in generators 1. = 1,, and Py which is parallel to

1',, (and similarly for y' E 1.,), P is ruled by two different families of par-

allel generators. Since 0 maps generators into generators O(P) must also

be a surface with two different rulings and, by Theorem 1.1.2, be affinely

equivalent to either a plane, a rotational hyperboloid, or a hyperbolic

paraboloid. Each generator in P of one family intersects all generators

of the other family. Since in a rotational hyperboloid the generators at

opposite points of the circle c(s) lie in parallel planes, O(P) cannot be

affinely equivalent to a rotational hyperboloid. To see that O(P) cannot

be affinely equivalent to a hyperbolic paraboloid note that in a hyper-

bolic paraboloid all generators of a given family are parallel to a single

2-plane and that this property is affinely invariant. Consider 0(y) c 10(x)

15 The proof of this theorem requires the material presented in Sect. 1.1.2.

The theorem but not its proof is essential for the following.
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and fix any 2-plane Q. Then there are exactly two generators 11, 12 Of

C,6(y) which are parallel to Q. If we now (parallely) translate the cone

along lo(,,) we see that the generators of the translated cone which are

parallel to Q must also be parallel to 11 and 12. This implies that O(P) is

generated by a family of parallel lines. Hence the hyperbolic paraboloid
degenerates to a plane.

We can now show that 0 is an affine map. Let 1 be any line and

x E I and consider two different planes P1, P2 which contain 1 and

intersect Q, \ fxJ. The intersections of these planes with Cx consist of

two generators each. Then O(Pi) and O(P2) are also planes and their

intersection 0(l) a line. It follows from Theorem 1.1.1 that 0 is affine.

Since the property ?7(y-x,y-x) = 0 =:>,q(O(y)-O(x),O(y)-O(x))
0 is translation invariant we can without loss of generality assume that

is linear. Let t be a vector with 77(t, t) = -1 and let c be a vector with

77(e,e) = 1, n(e, t) = 0. (1.4.11)

Then 0 =,q(ct, et) implies 0 = andtherefore

0(e)) = -77(0(t), 0(t)) =: a, n(o(e), 0(t)) = 0. Any vector v can

be decomposed into v = v,c + vtt, where e satisfies Equations (1.4.11)
and v, vt E R. We obtain q(o(v), 0(v)) = aTI(v, v) which implies that
1
0 leaves the quadratic form associated with q invariant. But then it

must also leave Tj invariant. I

[I p. 401 Definition 1.4.2. Let 77 be a Minkowski metric. The pair (An, n) is

called Minkowski spacetime.

Using orthonormal bases it is easy to see that all Minkowski spacetimes
are isomorphic, i.e., we can speak of "the" Minkowski spacetime.

In a Minkowski spacetime there is no designation of future and past.
(Observe that we needed the 1-form -F in order to define the future direc-

tion.) Observe that the set C,\Iol consists of two connected components,
say C0+ \ fol and Co- \ fol. We may now choose C (respectively, CO-) as

the set of events in Q, to the future (respectively, past) of o (including
o). Hence C0+ is the set of all events which can be reached by a light ray
with source in o. By continuity, this also determines the future direction

at any other event x E An where C.+ == (x-o) + C0+- Observe that this

definition coincides with our previous definition in the case Let

v E Rn be a vector with q(v, v) =< 0. Then we have

(i) either 71 (v, w) < 0 for all w E C and q (v, w) > 0 for all w G Co-
(ii) or q(v, w) > 0 for all w G C and 77 (v, w) < 0 for all w c Co-.

Hence we can alternatively define the future direction by singling out

a vector v E Rn with q(v, v) < 0. Since it is more practical to work

with vectors than with connected components of light cones one usually
chooses this alternative definition.
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Definition 1.4.3. Let (A',,q) a Minkowski spacetime. A time orienta-

tion ts an equivalence class [v] of vectors in Rn such that 77(v, w) < 0 for
all v, w E [v].

Given a time orientation [v], we say that the future light cone at

o E A is the set C = fo + w E C,, : q (w, v) :5 01 and the past light cone

is the setCo- == fo+w EQ, : 77(w,v) >01.

Let )5 be the invariance group of the light cone structure and P be

the group of Poincar6 transformations, P = fx  --> L(x-o) + b : b c

Rn, 0 E An, L E 0(m, 1) 1. Given an orientation [v], we call P+ = P+ nP

the group of time orientation preserving Poincare transformations. The

discussion above suggests to reduce the group )5 to a subgroup 73+ by

asserting that the elements of 13+ map future light cones into future light

cones.

Lemma 1.4.1. Let (An, 77) a Minkowski spacetime and [v] a time ori-

entation. Then J5+ = J b E  b(C,+,) = CO+ I is a subgroup of
v)(0)

Proof. Clear.

Lemma 1.4.2. The transformation 0 is an element of P if and only if
there is an a G R \ 101 and a 0 E P such that 0 = ao; 0 E )5+ if and

only if there is an a E R+ \ 101 and a 0 E P+ such that 0 = ao.

Proof. This follows directly form Theorem 1.4.1.

A priori it is conceivable that there exist other fundamental invariants

of space and time which would restrict the group even further. We will

now show that because of the validity of Euclidean geometry and the

principle of Galileian relativity 1.3.1 this is not the case.

Proposition 1.4.1. Fix a non-relativistic, inertial observer t  --> o + tt

and consider its associated Newton spacetime (An, t,,r, (0)). For

each x E A let E =  yE An : F(y-x) = 01.

(i) There exists a Minkowski metricq which generates the light cones

as measured by the observer t  -* o + tt. Further, this Minkowski

metric is unique up to a multiple.

(ii) Let x cz An .
The map 0 E )5 restricted to the Euclidean space

E.,, (., .),-,(0) is an isometry if and only if 0 E P.

(iii) Let P' be a subgroup of the Poincar6 group P such that

(a) for each Euclidean isometry 0: E E., there exists a 0 (E P'

with 0 1
= V),

(b) for each non-relativistic observer t o' + tt' with 77(t', V) < 0

there is a 0 E P' with O(o + R+t) = o' + R+V,

(c) All 0 E P' preserve the time orientation.
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Then P' = 'P+.

Proof. (i): The adapted Minkowski metric q is just given by q (u, v)
-7-(u)-r(v) + , (0) -

Observe that T(w) = -77(,T, w) for all W E Rn.

(ii): This follows directly form Lemma 1.4.2.

(iii): We will first show that for any two different vectors eo, eo with

71(eo, eo) = q(eO, eO) =: -1 and 77(eo, e0 ) < 0 there is a Lorentz transfor-

mation L which leaves spanfeo, e'01 and its q-orthogonal complement
spanfeo, e'01 J-

= fw E A : q(w, eo) = q(w, eo) = 01 invariant. There is

a vector v c R' with eo I I eo + v and q (eo, v) = 0. Since q(eo, v) we have

77(v, v) > 0 and the vector el = vlV'rq(v, v) is well defined. By definition

it satisfies 71(eo, el) = 0 andq(el, el) = 1. We complete the set of linearly
independent vectors feo, el I to an 77-orthonormal basis feo, el, . . . 7 e,,-

of R'. Let L be the Lorentz transformation defined by

2
Leo (eo + v)1 1 - JJvJJR_ eo)

2
Lei (el + JJVJJR`-180)1V1 IIVIIRI- I ,and

Lei=ei ViEf2,...,nJ.

It maps eo into eO and leaves the subspaces spanft, 61 1, spanfeil (i E

2, .. .,
n - 11) invariant. This transformation is called a Lorentz boost.

We will now show that the group G generated by all Newton

transformations with respect to the inertial frame (eo,,q(eo, .)) and all

Poincar6 transformations 0 of the form O(x) = o + L(x-o) where L is

a Lorentz boost coincides with the group P+ of time orientation pre-

serving Poincar6 maps. It is clear that G is a subgroup of P+. To show

the converse Let o, o' G An and f eo, . en- 1 1, feo.... e'_lJ two or-
n

thonormal bases with respect to q. We have to show that the Poincare

transformation V) which maps o into o' and o + ei into o' + ei for all

i is a composition of maps in JV and G. In each basis there is ex-

actly one vector ek (respectively, e ) with 77 (6k i 6k) - 1 (respectively,
= -1) and 77(ek,t) -- 0 (respectively, 77(el,t) < 0). We can

renumber the basis vectors such that ek eO, el = eo -
If eO = Co

let 01 be the map x  -4 x + (o'-o). If eo eo then there is a vec-

tor v E Rn with 77(v, eo) =: 0, 0 < 71(v, v) < 1, and eO 11 eo + v. In

this case let 01 be an element of the Newton group with respect to

non-relativistic inertial frame (eo, 77(eo, .)) which maps o to o' and el to

v/JJvJJ,-i(o). Consider the Poincar6 transformation 02(X) == o + L(x-o)
where L is Lorentzian boost which maps eo into eO and leaves the

plane spanjeo,e'01 invariant. Observe that

and f (02) -1 (eo
- I (ell are both orthonormal1)1 (02) (02) -1 (enl- 1)

with respect to q and that

_l(en'_l)Jspanfol (el), . . . ,  bl (e, 1) 1 = spanf (02) 1 n
(02)
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= Ix : 71(x - o, eo) = 01.

Hence there is element 03 of the Newton group with respect the to

non-relativistic inertial frame (e0,,q(eo, .)) which leaves o' invariant and

_1(6ssatisfies 03 0 01 (ei) = (02) (i = 1 n - 1) -
This implies 0

02003001-

Finally we can show that P+ is the only subgroup of P which satisfies

(a), (b), (c) .

Let 0: E0 -- E0, be an Euclidean isometry. Then 0 extends to a

unique transformation Op E P which leaves t invariant, 0(x) = V) (X-0) +
-F(x-o)t. Hence the Newton group Ar is a sub-group of P'.

Let o' E A' and let V be a vector with Since -F(t') = I and 77(t', V) < 0.

By assumption there is a 0 E P which satisfies 0(o + R+t) = o' + R+t'.

In particular, the associated Lorentz transformation maps t into R+V.

We have seen above that there are Newton transformations 01, 03 with

respect to (t, -r) such that V) = 02 0 03 0 01 ,
where a 02 is the Poincar6

transformation that corresponds to a Lorentz boost which maps t into

R+V and leaves the spaces spanft, t'j, and its 77-orthogonal complement

spanft, V1
' invariant. Hence 02 is the composition of maps provided by

assumption (a) and (b). Since V was arbitrary we obtain that P' contains

all Lorentzian boosts and all elements of the Newton group associated

with (t, -r). Consequently, P+ = P. I

Let (t, -r) be a non-relativistic reference frame and E, be a hyperspace in

spacetime which represents an instant of time. If we assume the axioms of

Euclidean geometry for E,, then, to be consistent, we have to assume that

this structure is invariant with respect to any transformation which is

an isomorphism of our physical structure. Hence (ii) of Proposition 1.4.1

implies that we must restrict to the Poincar6 group P. Preservation of

time orientation reduces this group to P+. By Proposition 1.4.1 (iii),
the axioms of Euclidean geometry, and Postulate 1.3.1, the Poincar6

group cannot be further reduced. Hence we conclude that space and

time are well described by a Minkowski spacetime together with a time

orientation.

The (arbitrary) non-relativistic inertial frame (t, -r) we have started

with satisfies 77(t, t) = -1. Recall that t was the velocity vector of the

inertial observer t  --> o + tt who was supposed to be at rest. Since the

Poincar6 transformations are the isomorphisms of Minkowski spacetime,

any other inertial observer t 1-4 o'+ tt' who can be supposed to be at rest

must be linked to t  --> o + tt by a time orientation preserving Poincar6

transformation 0. If we denote the associated linear transformation by
Lo then V E R+Lo(t) holds." In particular, all admissible observers V

must satisfy 77(t, V) < 0.

16 Observe that t' 0 Lp(t) in general since -r which is used to normalise t, is

not preserved by Lorentz transformations.
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Definition 1.4.4. Let (A',,q) be a Minkowski 8pacetime with time ori-

entation [v].

(i) A (special-relativistic) infinitesimal observer is a vector t E Rn

with 77(t,t) = -1, 77(v,t) < 0.

(ii) A (special-relativistic) observer is a curve -y: t  - -1(t) such that

the velocity vector  (t) is a special-relativistic infinitesimal observer

for all t.

(iii) A (special-relativistic) inertial observer is a curve -/: t  -4 x +

tt E An where x E A' and t is a special- relativistic infinitesimal
observer.

For any special-relativistic infinitesimal observer t" E Rn and any any

otl E An there is a time orientation preserving Poincare transformation

 b which maps t 1-4 o + tt to o" + tt" for all t.

The rest space with respect to (t, -r) at the event o E An coincides

with Eo = fx E An : 77(x-o, t) = 01. Let 0 E P+ such that its associated

Lorentz transformation maps t to V. Since 0 maps E into the set E' =

fx1 E An : q(x'-o', V) = 01 this set must be interpreted as the rest space

with respect to the special-relativistic inertial observer t  --> o' + tt'. In

general, this space does not coincide with the non-relativistic rest space

E,,,. Hence we arrive at the following definition.

Definition 1.4.5. Let t be a special-relativistic infinitesimal observer.

(i) The infinitesimal rest space with respect to t is the set V
I

:=

1W G Rn : 'q(t', W) = 01 C Rn.

(ii) The affine rest space containing o' E An with respect to t is

given by o' + t" C An.

The affine rest space inherits the Euclidean scalar product (u, v)

71 (u, V) (v, w E W)') -

Similarly, the time difference  Att, (x, y) of two events x, y with respect

to the special-relativistic infinitesimal observer V is given by t where

t E R is the (unique) number such that x + tt' lies in the affine rest space

of V whichcontains y.

The original non-relativistic observer t  --> o + tt is also a special-
relativistic observer and for this observer the non-relativistic and special-
relativistic definitions for rest space with associated Euclidean scalar

product and time difference coincide. The relativity Postulate 1.3.1 im-

plies that for every other special-relativistic inertial observer o' + tt'

lengths and angle should be measured by and time differences

by Att, (-, -) -

In conclusion, a Minkowski spacetime together with a time orienta-

tion contain all the geometric information of spacetime. This geometric

structure is mathematically simpler and more elegant than the structure

of a Galilei spacetime.
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Remark 1.4-1. The geometric structure of spacetime was discovered by
Minkowski (1909). But before him Albert Einstein (1879-1955) (Einstein
1905) had realised that absolute time does not exist and came to an

equivalent but less elegant description of spacetime. His work contains

the main physical discovery which justifies to speak of Einstein's special
theory of relativity. An important precursor of Einstein was Hendrik

Antoon Lorentz (1853-1928) whose explanation of the Michelson-Morley
experiment anticipated the length contraction17.

1.4.1 Causality in special relativity

We start with some terminology which will be justified below.

Definition 1.4.6. Let (A',,q) be the Minkowski spacetime.

(i) A vector w is called spacelike, if j7 (w, w) > 0, timelike if 77 (w, w) <

0, and lightlike (or null) if 77(w, w) == 0. A vector w is called causal

if it is timelike or lightlike.

(ii) Let [t] be a time orientation. A causal vector u is called future

directed (past directed) if q (u, t) < 0
-

(iii) A curve -y is called spacelike (resp., timelike, lightlike (or null),
causal, future directed, past directed) if all its velocity vectors  are

spacelike (resp., timelike, lightlike (or null), causal, future directed,
past directed).

Let w be a vector and x, y E A' with y == x + w. If w is spacelike then

there is an infinitesimal observer t such that q(w, t) = 0. This implies
that the events x and y = x + w lie in the same affine rest space with

respect to t, in particular, these events are taking place at the same time

with t. Hence there cannot be any causal process which links x to y or

vice versa.

On the other hand, if w = y-x is timelike and future directed then

either wlV-- (w, w) or -wIVI-77(w, w) is an infinitesimal observer. For

definiteness assume that wl _-,q(w,w is in the time orientation. The

inertial observer t i--+ x + t W
connects x with y. Hence the event x

Vf__ 11_(WI-)
definitely must take place before the event y. This motivates our causality
definitions above (see also Postulate 8.0.1).

This discussion also implies that the field of light cones x 1-4 Cx serves

as a causal boundary.

Corollary 1.4.1. Let (A', n) be a Minkowski spacetime.

(i) The set of all events y E x which can be causally influenced by
processes taking place at x are given by J+(x) := fy E An : y can

be reached from x by a causal, future directed curvel.
17 His interpretation was different from Einstein's, however.
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0i) aj+(X) = C:.

Above we have seen that the most important ingredient of our discussion

is the fact that the isomorphisms of spacetime are just the elements of

the time orientation preserving Poincar6 group P+. The main step to

arrive at P+ is contained in Theorem 1.4.1 in connection with Postu-

late 1.4.1. One may object that the constancy of the velocity of light is

a rather awkward postulate. However, it is closely linked to the funda-

mental notion of causality. The following theorem which has also been

obtained by Alexandrov (1975) allows to replace the light cone structure

in our fundamental postulate by the assumption of causality.

Theorem 1.4.2. Let n > 3 and consider the Minkowski space (A',,q).
Let 0: An _-, An be a bijective map such that 0 and 0' both respect

causality: y E J+ (x)  * 0(y) E J+ (O(x)) for all x, y E An.

Then there exist an L E 0(n, 1), an a E R \  01, an o E An, and a

b E R' such that O(x) = aL(x-o) + b for all x E An.

I p. 40

Proof. This theorem is a corollary to Theorem 1.4.1. We only have to

show that lightlike vectors are mapped into lightlike vectors by 0 and

We will first prove that for y E J+ (x), x  4 y the condition

,q(y-x,y-x) = 0 is equivalent to the assertion A(x,y) :4=> "for all

Z1 i Z2 E J+ (x) n J- (y) we have either zi E J+ (Z2) or Z2 E J+ (Zl) " -

If q(y-x, y-x) = 0 then J+ (x) n J- (y) is a part of a single light

ray. Clearly, any two points on a light ray are causally related. If

,q(x-y,x-y) < 0 then J+(x) n J-(y) contains an open set U C An.

It follows that U must contain points Z1 i Z2 which are connected via a

spacelike vector w. It is clear that z1  J+ (Z2) and Z2  J+ (Zl) -

Now we will prove the theorem. If x-y is lightlike then A(x, y)
holds. Since A(x, y) is formulated entirely in terms of causal relation-

ships, A(O(x), 0(y)) must also hold. But this is equivalent to

,q(0(x)-0(y), OW-0(y)) = 0.

Analogously for

p. 40 1

[I p. 451
It may be philosophically more appealing to demand causality than in-

variance of the light cones but it should be noted that our original version

is closer to the actual experiments motivating special relativity.

1.4.2 Length contraction and time dilatation

Since there are no absolute time or absolute space it should not come

at a surprise that lengths in space and time-differences are observer-

dependent. To simplify notation let JJwJJ == -\/ (_ww) for any spacelike
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vector w. Fix an event x E A' and an infinitesimal observer t and con-

sider a rod which rests in the affine rest space x + t
1
of t. If with respect

to the observer its endpoints are given by x and x + f at a time to, then

it will sweep out the subset

S z C: A' z = X + M + /-tt, A E [0, 1], E RI

Lt

t' Lt

KO

Lei

Fig. 1.4.7. Length contraction Fig. 1.4.8. Time dilatation

in spacetime (cf. Fig. 1.4.7). We complete It, ei =  111f Ii to an orthonor-

mal basis ft, ei, . . . , e,,- I I of A'. Now consider a second infinitesimal ob-

server t' who moves (relative to t) with the velocity v = II UII -ei. Let L be a

Lorentz transformation which maps t into t' and leaves spanft, el I invari-

ant. We have V = Lt = (t+ v) / VIT-_JIVI , Lei = (ei + I I VII t) / V-1 - I_IVI12,
and Lei = ei Vi E f2,.. .,

n - 11. The rest spaces relative to t' are all

parallel to Ltj-. In order to determine the length of the rod with respect
to t' we must calculate the length of

S n (x + Lt-L ) = X + 01
ei + 11 yllt.. a

. G [01 IV IIIF_
,

V

It follows that 11 'Il = V/1 - 11,61 - Iltll < 11 11. Hence the infinitesimal

observer t' measures a shorter length than t. This Lorentz contraction

is one of the reasons why initially many physicists found special general
relativity hard to understand. It should be remarked that an investiga-
tion of 3-dimensional objects shows that the Lorentz contraction is more

like a rotation. In particular, a moving sphere looks like a sphere at rest.
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There is a similar effect with respect to time, the time dilatation. In

spacetime, a time interval At with respect to t is given by the set

T =:  x + tt + a : t G [0,./At], a E t-L I

(cf. Fig. 1.4.8). In order to calculate ,At' we must consider the subset

t + V t

Tn(x+RLt)= x+t == E [0, /-At]
V-1 --11 m

,

V-1--11,Y112

of spacetime. It follows that At' = J_-JJVTJAt < At. This is the

reason for the twin "paradox": Consider two twins, one of them staying
at home, the other one travelling with high velocity away, and then, after

some years coming home. Afterwards the twin who had travelled will be

younger. Let t be the infinitesimal observer associated with the first twin,

t, be the infinitesimal observer of the second twin at her outward journey
and t, be the infinitesimal observer of the second twin during her return

journey. As a consequence of time dilatation, the time lapse between

outset and return with respect to the travelling twin will be shorter then

the time lapse with respect to the twin at rest. Hence after her return

the twin who has travelled will be younger than the other one. If the

time interval and the involved velocities are large enough the effect can

be spectacular.

This effect is purely geometrical and has nothing to do with acceler-

ation. The fact that the situation is not completely symmetric, i.e. that
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the twin who had travelled changes her direction and therefore is not an

inertial observer is only needed to get her back but has nothing to do

with the effect. To make this point clearer imagine that spacetime would

be cylindrical. To be concrete, let y be an event such that v = y-x is

spacelike and consider the hyperspaces Fx = fz E A : 77(z-x, v) = 01
and Fy = Iz EE A : 77(z-y, v) = 01. These two hyperspaces enclose a

region M which is bounded in the direction of v. Now assume that

spacetime is just the set M where Fx and Fy are identified. It can be

shown that locally it is impossible to differentiate between (M,,q) and

(A',,q). (We will not prove this fact. It will become clear in the next

chapter). If the twins lived in (M, 77) instead of (A',,q), the sister who

travels would not need to turn back. As soon as she arrives at Fy (or
Fx) she would (by our identification) be at the other hyperspace and

therefore on the other side of her sister. Just travelling on she would

eventually meet her sister again. If n = 2 then M is just an ordinary

cylinder and it is easy to visualise the whole setup (cf. Fig. 1.4.10).

t

Lt

0

Fig. 1.4.10. The twin

paradox in a cylindrical
universe

-1.4.3 Relativistic particles and photons

We give, a brief outline of the elementary concepts of photons, par-

ticles and their collisions. Their non-relativistic analogues have been

introduced in the,section on the non-relativistic theory of particles

(cf. p 20). The content of this section will be used to motivate def-
initions in Chap. 5. Part of the physical discussion in Chap. 6 also

requires this section.

The following is the direct analogue of Definition 1.2.3 for a non-relativistic

particle.
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Definition 1.4.7. A special-relativistic particle with mass m is a pair

(rn,,y) where m c R+ and -y is a curve satisfying -1. The

curve -y is called its world line in spacetime.

A special-relativistic inertial particle is a particle -y which satisfies

 = 0.

Unlike in the non-relativistic case, we have now only one law which cov-

ers collisions. Let denote the incoming and (m'., 7j')j=l...3 .11

outgoing particles of a collision. Then conservation of momentum is ex-

pressed by the single equation

k

mi" Yi M/ (1.4.12)
_

j'Y iY
i=1 j=1

Choose any infinitesimal observer t and denote the projection to the

orthogonal complement of t by.: v  -*  Y. Then the momentum m splits

into spatial and temporal parts as follows:

M

M,Y (t +

Conservation of the spatial momentum takes the form

Ek
1

Ej=l M -

Tni v 3

IN ly (1.4.13)

112 -1-- 171i_F"i

which is a modified form of the non-relativistic conservation law (ii) on

page 21. Energy conservation takes the form

k

-7
-

1

___Mi T, Mi VFIF 11 1  jll (1.4.14)
j=1

Since
M

M +
1
M11,6112 + 0(11,U112)

2

we recover as an approximation the non-relativistic law of mass conser-

vation. If the equality I:k 1 mi
= El m' holds exactly we also recover

i= i i

an approximation of the conservation law for kinetic energy. The rela-

tivistic version of the conservation laws is not only more transparent and

economical, it also leads to important applications:

Example 1.4.1. If one bombards lithium 7Li with hydrogen 'H one ob-

tains helium 2He according to the nuclear reaction

111 +7Li -- 22He + energy.



1.4 Eiristein's special theory of relativity 45

The weights of 1 mol (i.e, 6.02213 - 1023) atoms of hydrogen (respec-
tively, lithium, helium) are 1, 00783g (respectively, 7.01601g, 4,00260g).
It follows that the final product is lighter by about 0, 01864g/mol hy-

drogen atoms. According to the energy conservation theorem above, this

mass difference corresponds to the energy E Pz  1, 864 - 10-5kg - C2 ';Z: 

1, 864 - (2.9979) - 10" m kg/s   1.67525 - 1012j. This energy is huge in

comparison to the amount of material involved. The energy amount of

an adult is about 8000 U per day or 2920000 U per year. It follows

that 1.67525 .1012j would last a human being for more than 500 years.

Observe that the amount of energy which can be obtained from nuclear

fusion is huge because the velocity of light c is extremely large. In this

book we chose natural units where a length unit is defined as c-time unit.

These units are appropriate to discuss relativistic effects on a theoretical

level but obscure the fact that velocities in everyday live are negligible
with respect to c.

A photon is (classically) characterised by its velocity and its frequency.
From elementary quantum mechanics one has the relationship E = hil

where h = 6.62608 .10-34j S is the Planck constant and v the frequency
of the photon. These quantities uniquely determine the momentum p of

the photon. Let t be an infinitesimal observer and E = hv be the energy

of the photon as measured by t. If 6 is the spatial velocity of the photon

relative to t then its momentum is completely determined and given by

p == E(t +,6111cll). Any other infinitesimal observer -C measures the light

frequency v' = -,q(t',p)1h. The frequency of visible light light ranges

from about 4 - 1 014 oscillations per second (infra red light) to 8 - 1014M [p. 40 11

oscillations per second (ultra violet light). I p. 47
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p. 45 1p 45

Special relativity can only be expected to be a good description locally. -115J4]
P.We will assume that special relativity is an exact "infinitesimal" de- [I p. 54]

scription, i.e. that it holds as a first order approximation near any

given point. A rigorous formulation of this idea requires manifolds
and tensor fields which will be introduced in this chapter.

This chapter contains much more material than is necessary for
the understanding of the following Chap. 3. While in an ideal world,
all this material would be standard knowledge of mathematicians and

theoretical physicists, we give a self-contained treatment for those read-

ers who still have to learn about analysis on manifolds. We will be a

little more general than necessary. Instead of using the field R we will

develop the theory for both fields R and C and write K if a statement

is valid in both cases. This generality is not needed for the main pur-

pose of the book, i.e., for presenting the theory of spacetime. However,
both physicists who go on to study gauge theory and mathematicians

who are interested in differential geometry as a mathematical disci-

pline will benefit from this generality. It is also instructive to see which

concepts depend on the real structure. Writing K instead of R if pos-
sible will not introduce any additional difficulty.

While everything presented here will be used somewhere in the

book, readers primarily interested in space and time may want to skip
material where possible and come back later to it when needed. The

minimal amount the reader should know in order to pass on to the

next chapter is

1. The definition of manifolds: Sect. 2.1 up to Sect. 2.1.1;

2. The tangent bundle: Sect. 2.2;
3. Tensors and tensor fields: Sect. 2.3 up to including Definition

2.3.7, Sect. 2.3.2;

4. Connections: Sect. 2.6 up to including Definition 2.6.2;
5. Examples of connections: Sect. 2.7.

There is a conceptional problem with the theory developed so far. From

our local experiments we implicitly extrapolated a structure of spacetime

which has only been tested in a small part of the small spacetime region

which is inhabitated by human beings. The Michelson Morley experiment

only indicates that Minkowski spacetime is nowadays a good description
of the spacetime structure of a (comparatively small) earth-bound lab-

oratory. A weak form of the philosophical Copernican principle states

The guide in the margins assumes that the reader has no knowledge of

analysis on manifolds.

ute
M. Kriele: LNPm 59, pp. 47 - 149, 1999© Springer-Verlag Berlin Heidelberg 1999
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that our position in spacetime is in no way special. In particular, at any

other event in spacetime one would observe the same physical laws. Nat-

ural sciences which go beyond the mere cataloging of phenomena would

be impossible without adopting this principle. Hence we feel justified to

extrapolate that

every event in the universe has a neighbourhood whose space-

time structure is well described by Minkowski spacetime.

We will see that this extrapolation is very different from the naive pos-

tulate that the universe has globally the structure of a Minkowski space-

time.

As a first step we will have to find out how to connect our local

Minkowski spacetimes. To give a simple example which exhibits part of

the problem consider the torus T’ which can be obtained from A’ via

the identification x - x + aei for all a c- Z, x E A’, where feiliE 1_-,nj
is a fixed standard basis of R1. We can equip Tn in a natural way with a

Minkowski metric induced by An. While locally there is no possibility to

differentiate between (Tn’ 77) and (A’, 77), both spaces are globally very

different (cf. Fig. 2.0.1).

Fig. 2.0.1. The torus T
2

We will now develop the mathematical techniques needed to globalise
the structure given by our collection of Minkowski spacetimes. First note

that we cannot even expect that locally Minkowski spacetime is an exact

description. But it is reasonable to expect that Minkowski spacetime
is the better an approximation the smaller the subset of events we are

considering.is. This means that we will have to formulate the theory

infinitesimally.
In Sect. 2.1 we will generalise (part of) the structure of A’ to man-

ifolds which may be thought of as a collection of local A’s. We will

then construct tangent spaces to a manifold which are the infinitesimal

approximations of it (Sect. 2.2).

2.1 Manifolds

In this section we will localise part of the structure of A and lay the

foundation for calculus.
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One of the most important structures of R’ is given by the collection

of all open subsets, because this collection is needed when one defines

limits, the most basic notion of analysis. Since A’ can be thought of as

R’ with the special properties of the vector 0 been forgotten about there

is a straightforward way to define open sets in A’. The subset U C A’ is

open if and only if there is a point o E A and an open set C R’ such

thatU=fo+v: vE0J.
We will now localise the topological structure of A’, i.e., the part of

the structure of A’ which tells us which subsets of An are open.

Definition 2. 1. 1. A topological space (M, -F) is a set M together with

a collection r of subsets of M which satisfies the following properties.

(i) 0 E r, M E 7-;

(ii) U, V c- r =* U n V E -r;

(iii) ifA is an index set and Ua E -F for each a E A then UaEA Ua G 7--

The collection 7- is called the topology of M. A set U C M is open if
U E T and is closed if M \ U G -F. A set V C M is a neighbourhood of

apointxEM if there is anUE-r withxEUCV.

It is clear that the collection of open sets of Kn (and therefore also of An)
satisfies properties (i)-(iii) of Definition 2. 1. 1. This justifies the definition

of a topological space. On the other hand, a general topological space

may have properties which are quite pathological. This can be seen from

the following two extremal examples. Let M be any set and define -rfine

to be the set of all subsets of M and ’Tcoarse f 0, MI. Then A Tfine)
and (MiTcoarse) are topological spaces.

Definitions which can be stated purely in terms of open sets carry

over to topological spaces.

Definition 2.1.2. Let (M,,T) and(M, fl be topological spaces.

(i2 A map f : M --+ 1 1 is called continuous if f
- 1 (1 ) E 7 for all

U E T. A bijective, continuous map whose inverse is also continuous

is called a homeomorphism.

(ii) A subset U C M is compact iffor every collection of sets WaIaEA
with Ua E T and U C UaEA Ua there are finitely many U,,(1), . . . Ua(k)

ukwithUc i=AW-
(iii) A topological space (M, -r) is connected if U, V E -r with U n V

0 and U U V M are necessarily of the form U = M, V = 0 or

V = M, U 0. For the topological spaces we are interested in

(cf. Definition 2.1.4 below) this is equivalent to the requirement that

any two points can be connected by a continuous curve [0, 1] ---> M.

(iv) A collection of open subsets WaJaEA is a basis of the topology
-r if for every open set V there is a subset B C A with UbEB Ub = V*
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(p) A subset U C V is called dense if V where t! is the closure

of U, i.e., the smallest closed set containing U.

(vi) A collection of open subsets fUa’jae_-A is a sub-basis if all finite
intersections of sets U,,, form a basis of the topology -r.

Lemma 2.1.1. Let M be a set and jUaja(EA be any collection of sub-

sets of M which satisfies UaEA Ua = M. Then there is uniquely defined
topology -r of M such that jUafaEA together with the empty set 0 are a

sub-basis of T.
I

Proof. This follows immediately from the definition of a topology. I

We can now describe those topological spaces which cannot be locally
distinguished from A’. Let (M, T) be a topological space which is Haus-

dorff, i.e has the property that for any two different points x, y E M

there are neighbourhoods U of x, V of y which satisfy U n V = 0. The

topological space (M,,r) is locally indistinguishable from A’ (considered
as a topological space) if each x E M has an open neighbourhood U

2such that there is a homeomorphism W: U -* V c R’. The pair (U,  o)
is called a topological chart of M. Since for each open subset 1 C U the

restriction of  o to 1 is also a homeomorphism onto its image, we have

the following compatibility property.

Let (U, W) and (1 ,  3) be topological charts of (M, -r) with UnO
0. Then the map o  p-:  p(U) n ( (a) --+  p(U) n ( (a) is a

homeomorphism.

We would like to have not only a topological structure on M but also

a structure which allows us to use the tools of analysis. Unfortunately,
there is not an independent definition of a "differentiable space" which

is analogous to the definition of a topological space. To get an idea how

this difficulty can be overcome we can view the charts (U, W) as a way to

induce the local topological structure of R’ on M. To be more precise,
let M be any set, WiliEl be a set of subsets of M with Uj,c-I Ui
M, and  pj: Uj > Vi bijective maps onto open subsets of R’. We can

now attempt to define a topology on M by using the sets f oj-’(Wj) :

Wj C Uj is openj as a sub-basis for the topology of M. In order to get a

topology consistent with a local description we have now also to demand

the compatibility property above. Still, the resulting topological space

could fail to be Hausdorff (cf. Fig. 2. 1. 1). Since this is a local property, we
will demand it in addition. We have now defined a topological structure

on M which is locally indistinguishable from the topological structure of

R1. This definition can be carried over to the differentiable structure.

2 Recall from the definition of the topology of A’ that the map V),: X, --+ R,
x --+ x - o is a homeomorphism.
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identify Fig. 2.1-1. A topological space

which is locally homeomorphic to

R but fails to be Hausdorff

Definition 2.1.3. Let I be an index set and (M,,r) be a topological space

which is Hausdorff. A Ck-atlas of M is a collection  oj: Uj C M -4 Kn

(i c 1) of local homeornorphisms such that

(i) each Uj is open and connected,’

(ii) each x E M is is contained in some Uj,

(iii) for each i, j with Uj n Uj V - 0 the map  oj o  oj :  oj (Uj n Uj)

 oj (Uj n Uj) is a Ck -diffeomorphism.

The pairs (Uj,  pj) are called charts of M. A chart (Uj,  oj) is centered at

x E M if x E Uj and Wi (x) = 0. Two charts A 7  Oa) (a = 1, 2) are called

compatible if they satisfy the compatibility condition (iii). Two atlasses

are compatible if each pair of charts in their union is compatible. A Ck_

atlas A is called maximal if any Ck -atlas containing A coincides with

A.

Remark 2. 1. 1. In the case K = C every Ck-atlas (k > 1) has the prop-

erty that Wi o (Wj)-1 is analytic, i.e., is locally given by its Taylor series.

This follows immediately from the fact that C-differentiable functions

are analytic.

For technical reasons (cf. Sect. 2.1.2) we will also demand that the topol-

ogy of M has a countable basis. This means that there are countably

many sets fVjjjeN such that any open set VV is the union of sets Vi.

Definition 2.1.4. Let (M, -r) be a connected topological space which is

Hausdorff and which has a countable basis. (M, -r) together with a max-

imal Ck -atlas is called a Ck-manifold. A C’-manifold is also called

a smooth manifold. We will often refer to smooth manifolds simply as

manifolds.

A subset N C M is an m-dimensional submanifold of M if for each

x E N there is a chart (U, W) of M centered at x such that W(N n U) =

W(U) n ly E K’ : y’+’ = ... = y’ = 01. An (n - l)-dimensional
submanifold is often called a hypersurface.

Observe that a subset N C M can be a manifold without being a sub-

manifold of M (cf. Fig. 2.1.2).
The following lemma guarantees that a manifold is determined by any

(not necessarily maximal) Ck-atlas (k > 1) which is compatible with the

given maximal Ck-atlas. In practice, it is therefore sufficient to work

with any given atlas. It can be shown (Hirsch 1976) that any maximal
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Fig. 2.1.2. A manifold M c R2which is

not a submanifold of R2

Ck-atlas contains a subatlas which is C’. Hence for most questions it

is no loss of generality to consider only smooth (i.e., C"O) manifolds.’

On the other hand, it should be noted that Co-manifolds are really
more general. We will not consider such manifolds in this book.

Lemma 2.1.2. Let A be a Ck -atlas. Then there is a unique, maximal

Ck -atlas containing A.

Proof. Let B be the set of Ck-charts which are compatible which each

chart in A. Clearly, A C B. Any two charts (Vi, 01) and (V2,  b2) in B

are compatible. To see this let x G V, n V2 and (U,  o) be a chart in A

with x E U. Then the maps  o o (0j)-1 and 02 o (p-1 are Ck in the open

set 01 (U n V, n V2). It follows by composition that 02 0 (01) -1 is also

Ck. That 01 0 (02) -1 is Ck can be shown in the same way. It remains

to prove that B is maximal and unique. The first assertion follows from

the definition of B. Assume that B’ is another atlas containing A. Since

every chart of B’ is compatible with each chart of A, it must belong to

B by the definition of B. Hence B’ C B and the second assertion follows

as well. I

Example 2.1.1. Consider the cylinder which can be obtained by identi-

fying opposite sides of the rectangle [a,, bi] x (a2, b2)  

f (a,, y) : y (E [a2, b211 - I (bi, y) : y c [a2, b211

As charts we can take the maps

 oj: ([a,, bij x (a2, b2))
bi - al

x (a2, b2) -- R
2

2

(x, Y) for x <
bj

2al
(XI Y  (x - (b2 - a2), Y) for x

bj
2al

 02: (al, bl) x (a2, b2) -4R
2

(x1y) - (X,Y).

3 It can in fact be shown that there is always an analytic subatlas. However,
it is not a good idea to restrict to analytic atlasses because then some

important technical tools do not work (cf. Sect. 2.1.2.)
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Consider a (long) rectangular strip of paper. The two shorter opposite
edges can be glued together in two ways. Either one obtains a cylin-
der (cf. Example 2. 1. 1) or a figure which looks like a cylinder with a

twist. This Wbius band can mathematically be constructed as follows

(cf. Fig. 2.1.3).

identify with flip

Fig. 2.1.3. The construction of a M6bius band

Example 2.1.2 (M6bius band). Let V, = (0, 2a) x (-b, b) C R2 and V2 =

(-2a, 0) x (-b, b) C R2. We define on VI U V2 an equivalence relation -

by

(X
I ,x2)_(Xl - 3a, X2) if (XI, X2) C (a, 2a) x (- b, b),

(X1, X2)_(Xl - a, _X2) if (XI, X2) E (0, a) x (-b, b)

and the manifold M by M = (Vi U V2)/-. Denote the canonical pro-

jection V, U V2 -* M, (xI ,x2) -, [(XI, X2 )] by,7r and let Ui = ir-’(Vi),
Wi = (ir_1)IUi (i E 11, 21). Then J(Ul,  01), (42, W2)J is an atlas of M.

Since manifolds have a differentiable structure we can define differen-

tiable maps on manifolds.

Definition 2.1.5. Let M, N be C1 -manifolds and k < 1. A map f : M

N is Ck-differentiable if for every two charts A,  Oa), (Vb, Ob) of M, N
the composed map Ob 0 f 0 (W)- I is a Ck -map. A C’ -differentiable map
is called smooth. The set of all Ck -differentiable maps from M to N is

denoted by Ck (M, N).
The maps g: M -+ K’ and h: K’ ---> M are Ck-differentiable if

for every chart Pa,  Oa) the composed maps 9 0 (Wa)- I: K’ -- K’ and

 Oa o g: Km --+ Kn are Ck -differentiable. The set of all Ck -differentiable
maps from M to K’ and from K’ to M are denoted by Ck(M, KI) and

Ck (K-, M).
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It is easy to see that this definition is satisfied if f is Ck with respect
to any given atlas. For N = K’, M = K’, the definition coincides with

the usual definition of differentiability in elementary analysis.
Recall from analysis that a continuously differentiable map F: K’

Km has rank r at x E K’ if the subspace DF(x)K’ C K’ has the

dimension r.

Let f:M-- Nbea Ck-differentiable map and x G M. If (Ul ol),
(421 W2) are charts centered at x and (Viol), (V2) 02) charts centered at

f(x), then the rankof the mapsolof oWl-1 at Vl(x) andV)20fo 02_ I

at (P2(X) coincide. We can therefore speak of the rank of f at x and the

following definition is independent of the chosen charts.

Definition 2.1.6. Let f: M ---* N be a Ck -differentiable map and x E

M. Let (U, W) be (any) chart of M centered at x and (V, 0) be (any)
chart of N centered at f(x). The map f

(i) has rank r at x if 0 o f o W-’ has rank r at  p(x),
(ii) is an immersion at x if D(o o f o W-1) is an injective linear map

at W(x),
(iii) is an submersion at x if D(o o f o  o-’) is a surjective linear

map at at W(x),
(iv) is an local diffeomorphism at x if D(o o f o  o-’) is a bijective
linear map at  o(x).

Lemma 2.1.3. Let f: M -+ N be a Ck -differentiable map of rank r at

x E M. Then there is a neighbourhood W of x such that for each y E W

the map f has rank ry > r at y.

In particular, if f is an immersion (respectively, a submersion, a

local diffeomorphism at x) then it is also an immersion (respectively, a

submersion, a local diffeomorphism) at any y E W.

Proof Since D(oofoW-1) is continous the existence of r linearly indepen-
dent vectors in D(o o f o  o- 1) (,p(x))Kn implies that for y close enough to

x there are also r linearly independent vectors in (DO o f o  r 1) (,P(y))Kn.
Hence the rank of f cannot fall in a sufficiently small neighbourhood of

a given point. For the second statement observe that immersions, sub-

p. 47 11 mersions, and local diffeomorphisms all have maximal rank.
_ZT-11F

I p. 61

2.1.1 Construction of manifolds

In analysis, the inverse function theorem plays a fundamental r6le

because it allows to draw local conclusions from infinitesimal assump-

tions. In this section we show that the inverse function theorem and

also similar theorems carry over to manifolds. A special case (Propo-
sition 2.1.1) allows a construction of submanifolds without specifying
an Atlas.
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We will occasionally use the results of this section. But the reader

who is not primarily interested in analysis on manifolds is advised to

skip this section and to return to it when needed.

The following lemma is a consequence of the inverse function theorem.

Lemma 2.1.4. Let U C Kn, V C K’ be oPen, x E U, and f : U -- V be

a continuous, differentiable map with constant rank r in U.

Then there exist

(i) an open neigbourhood 0 C U of x,

(ii) a homeomorphism 0: 0 --> fy E Kn : I y I < 11,
(iii) an open neighbourhood V D f(U) of f (x),
(iv) and a homeomorphism 0: Iz c KI : IzI < 11 -4 f)

such that f = Oop, oo where MY’,- lyn) = (yi.... I Y" 0’...’ 0).

Proof. Let E be the (n - r)-dimensional vector space E = Iv Cz Kn

Df(x)v = 01 and F C Kn be an r-dimensional vector space with Kn

4E(DF. Let fe,+,,. enj be a basis of E and fel,. ..’ e,j be a basis of F.

For each y C Kn let A’(y) be the ith component of y with respect to the
e

basis f el, . . . , en 1. The vectors fi = Df(x) ej (i E f 1, r1) are a basis

of the r-dimensional vector space Df(x)Kn C K’. We choose linearly
independent vectors f,+l.... f, such that ffl, . . . , f,,, I is a basis of K".

For z E K’ let y’ (z) be the ith component of z with respect to this
f

basis. We define

0 A’ (Z)f

0
,(Z) = 1-tf (Z) Kn.A(Y)

+I(Y)
E Kn, f0 E

An
e
(Y) 0

The map

g: U  -4 IK’, y  -4 [t o f (y) + A(y)

is continuously differentiable and Dg(x): Kn  -4 Kn is invertible. Hence

by the inverse function theorem there is a neighbourhood 0 c U of x

such that g is a diffeomorphism from 1 onto the open set g(Z ). There

is an c > 0 such that B,(x) := Iz E Kn : Iz - g(x)l < Ej C g(U). We
define g-’(B, (x)) and the bijective map

U --- BI (0) C Kn’ Y (g (Y) - g (x)).

This numeration of basis vectors of E 8 F may seem slightly odd but will

prove to be more practical later on in the proof.
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The rank of f is constant on U which implies that dim(Df(y)Kn) = r

for all y E U. Since Dg(y) is bijective for all y E U and Dg(y)(v)
I-t(Df (y)v) for all v E F the maps Df(y): F -+ Df(y)F and

/-t: Df(y)F --4 K’ (D f01 C K’ E) K‘ = Kn

are both bijective. Let vy: Kr E) 101 Df(y)F be the inverse to the

latter map.

We will now show that the map h f o 0-1 does not depend on the

variables y’+’,..., yn. We write K’ Kr E) K‘ and v = V1 (D V2 for

any v E Kn. Since f(y) = hQ it o f (y) ED -!A(y) - Iu o f (x) (D !A(x)) we

have

eDf(y)v Djhj-!,Aof(Y)ED-,!A(Y)--! o Df(y)v
POf (x) E) A (x)

0 P

+ D2h, ittof (y)(3)-i -1 -i.\(x) o Av.
c cx(y)

Inserting Df(y) vy o p o Df(y) into this equation implies

D2h,.I,,Of(Y)E)i,\(Y)- i./,Of(x)E)iL,\(x) o Av = ay o /-t o Df(y)v,

where ay is the linear map given by

ay: Kr ED 101 -4K’, y  --+ evy - Djhj-,!,UOf(Y)(D-,1A(Y)--! -1
tto f (x) E)

,
A (x)

Since y f j Kn-r,,pof (y)E)!A(y) is invertible and A maps K’ onto 0

we have only to show that ay = 0 in order to prove D2h = 0. For v E F

we have A(v) = 0 and and therefore ay o ft o Df(y)v = 0. The map

pol)f coincided on F with Dg(y) and is therefore bijective. In particular,

/-t o DfF == Kr  101 which is the domain of 7y. Hence ay vanishes.

Since we have proven that h(y) does not depend on yr+1.... yn we

can write h(yi) instead of h(yi (D Y2)-
We identify K’ with Kr ED K’ r and write w = W1 E) W3. Let

jbj,...,b,-rj be the canonical basis of K‘ and let -r: K‘ --,

spanjfr+j,...,f,,j be the linear map which is defined by -r(bi) = fi.

We define the map 0 by

V): B, (0) C K’ --4 K’ ZI ED Z3  -’ h(ZI + A(f (X))) + ’T (Z3) -

This implies

0 Pr 0 O(Y) -= 0 0 Pr( g(Y) g(x))

= V) 0 Pr(1P 0 f (Y) -IP 0 fW + 1A(Y) -1AW)

= -0 0 Pr(P 0 f (Y) - A 0 f(X))
E
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= - h(/,t o f (y) - p o f(x) + A(f(x))) = - h(I-c o f(y)).
6 f

-

Denote the projection of tt to the span of the first r canonical basis

vectors of K’ by A. Then we have h o h o tt. Equation D2h 0

implies f(y) = h ( 1 A(f (y))) which in turn gives IP 0 Pr 0 0(Y) = f(Y)
We still have to show that V) is a homeomorphism. But this follows

since both h and T are homeomorphisms. I

Corollary 2.1.1. Let Mbe an n-dimensional, N be an m-dimensional

Ck -manifold, and f : M -- N be a Ck -differentiable map which has con-

stant rank in a neighbourhood of x E M. Then there exist charts (U, v),

(V, 0) centered at x, f (x) such that W(x) = 0, O(f (x)) = 0, and

0 0 f -  0-
1

: Kn _ Km’ (xi I .... Xn) F--- (XII ... I xr, 01 ... 10).

Proposition 2.1.1. Let Mbe an n-dimensional, N bean m-dimensional

Ck -manifold, and f : M -4 N be a Ck -differentiable map which has con-

stant rank in a neighbourhood of x E M. Let y E f(M). Then the set

f-’(y) is a closed (n - r) -dimensional submanifold of M.

Proof. Let x E f (y) and take charts as given by Corollary 2. 1. 1. Then

we have

 p(U n f-1(y)) =  p(U) n (0 o f o V-’)-’(O)

=  o(U) n fz c- K
n

: ZI = ... = Z’ = 01.

The assertion follows directly from the Definition 2.1.4 of a submanifold.

I

Proposition 2.1.1 is a powerful tool which is used to construct manifolds.

Example 2.1.3. Consider the submersion f: R’ \ 101 -+ R, x i--> IX12.
Proposition 2.1.1 implies that the sphere of radius p > O,in M which

coincides with the set f
-I (p2) is an (n - I)-dimensional submanifold of

R’. The reader try for her- or himself to write down directly an atlas of

the sphere of radius p. It is much more work.

2.1.2 Partition of unity

In this section we provide a method of localisation using functions
which is practical if one wants to define a global object using charts.

The prime example is the definition of integration in Sect. 2.5.4. This

method works only for real manifolds: K = R.

This subsection is somewhat technical. The reader may therefore
want to skim (or skip) this section on first reading and to return to

its proofs when the results of this section are needed.
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The aim of this section is to construct an atlas and for each chart a

function with support in this chart such that

(i) at any point there are only finitely many charts which intersect

(ii) the sum of all functions (which is well defined by (i)) equals I.

We start with two topological lemmas.

Lemma 2.1.5. Let M be a manifold. If M is not compact then there

exists a sequence of open sets f)/Vilic-N with compact closure such that

)lVi C )1Vj+j and UiEN)/Vi ":: M’

Proof. Let jUjjjErj be a countable basis of the topology of M such that

all Rj- are compact. Let W1 := U1. Since the closure of this set is compact
there is a k, E N with Wj- C Uk,

1 Uj =:: VV2. We proceed now by in-
i=

duction. Assume, we have already constructed )/Vj, . . . , )IV,, where )/Vp

P _

Uk,,+lW C-Ui. Then there is a kp+l > kp such that Ui )/VPj=1

Lemma 2.1.6. Let M be a manifold. And lualaEA be open sets which

cover all of M. Then there exists a countable collection jVjjjEN of open

sets such that

(i) each Vj lies in some Ua and has compact closure,

(ii) each Vj intersects only finitely many Vi.

("’) M ::-:: UjEN Vj’

Proof. We will first show that we can restrict to the case that A is

countable. Let 0 = I Oi IiErq be a countable basis and let f (V,,  Oc) I cc- c be

an atlas of M. For each Vc there are countably many sets Oi,, E 0 such

that Vc = U Zj Oi,,. Since 0 is countable so is the set j0j,cjjEN,cEc C 0.

Let Oi be a re-numbering of these sets and choose for each j C N an

index c(j) E C with Oi c V,(j). Then the collection j(0j, wc(j))IjEN is a

countable atlas of M. Since Oi is homeomorphic to Kn there is for each

j a dense sequence fXi,j IiEN of points in 0j. For each (i, j) C N x N let

a(i, j (E A) be an index with xi,j E Uqjj). Then the countable subset

fUa(ij)jijEN Of fualaEA covers all of M. It follows that we can assume

without loss of generality that A is countable.

Let Wo = 0 and let O/ViliEri be the sequence of sets constructed

in Lemma 2.1.5. The set )lVk+l \ Wk is compact and can be covered

by finitely many Ual(k), ...  Ua.,,,(,,) (k) for every k c N. We set Vk’j =

Ual, (k) n (Wk+2 \ Wk-1) which defines a countable family of sets since

N x N is countable. Property (i) is clear from the definition of Vk,j and

property (iii) follows from the fact that the sets )/Vk+l \ Wk cover all of

M. Finally, property (ii) follows because each set Wk is only intersected

by finitely many Vk,j- I
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Lemma 2.1.7. Let M be a real manifold and U, V open sets with R C V
-

Then there is a C’ -function h: M --+ [0, 1] with

(i) h(x) 1 for all x E a,
(ii) h(x) 0 for all x E M \ V.

r, r2 rl r2

Fig. 2.1.4. The proof of Lemma 2.1.7

Proof. We consider first the special case of two balls with origin 0 E Rn

but different radii: Let 0 < r, < r2 and B,,(0) = Ix (E Rn : jxj < rij,
Br,(0) = Ix (E Rn: jxj < r2j. The map

exp for 1 < t < r2
gri,r2: R+ -- R+, t  -->  O ((t-ri)(t-r2)

otherwise

is C’ and has the support Irl, r2l -
It follows that

t

’, 9r,,12 (s) ds
jri,r2 (t) r

fr,12 gri,r2 (s)ds

is also C’. The properties

j,r1,r2 (t) for All t G [0, rij,

j,,,,2 (t) cz (0, 1) for all t G (ri, r2),

jr1,r2 (t) ::::: 0 for all t E [r2) 00)

imply that the C’-function

h,, 12: [0, 1] ---+ R+, X 1-‘ gri, r2 (11 X I I )

is well defined and satisfies SUPP(h,i,r2) = Br2(0), hr,,r2 (X) = 1 for all

x E B, (0).
Consider now open sets U, V with R C V and let fVjjjEN be a

collection of open sets as provided by Lemma 2.1.6. For each j we will

now construct a smooth function hj which satisfies
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(i) hj (x) E [0, 1] for all x E M,

(ii) hj (x) = I for all x E U n Vj,
(iii) supp(hj) c V n Vj.

Let x E U n V and (IlVx, (,oxi ) be a chart centered at x with Wx (X) = 0

and Wx c V n Vj. There are positive numbers ri (x) < r2 (X) such that

Br2(X)(0) C (PX(WX)’ The map

h3.: IlVx --+ R+, y  --*

hr, (x),r2 (X) 0  PX (Y) for y E Wx
X

0 otherwise

is well defined and smooth. Since U n Vj is compact there exist finitely
many points xi, ... I XK such that the open sets

- 1
(Br, (x,) (0))jk=1,...’K

cover U n Vj. Hence the map hj
K

- hi (y)) is also well(Y) :=: 1 - f1k=1(1 X

defined and smooth. Clearly, we have hj(y) c [0, 11 for all y c- M. Since

hx, (y) = 0 for all y E M \ V n Vj we have also hj (y) = 0 for all y G

M \ V n Vj -
If y E U n Vj then there exists an xi with h3., (y) = I which

X

implies hj(y) = 1.

The function h(x) Ej’ , hj(x) is well defined since for each x all

but finitely many hj(x) vanish. h satisfies supp(h) c V, J’(x) > 0 for all

x E M, and h(x) > 1 for all x E a. Hence in order to prove the lemma we

only need to normalise h appropriately. Let U x c M : h(x) < 1/21.
This set is open and its closure is contained in M U. Hence by the same

construction there exists another smooth function h with h(x) > 0 for

all X E M, h(x) > I for all x E 1 , and supp(h) C M \ a. Observe that

and h do not vanish both at any given point. Hence

h(x)
h(x) = ~

h(x) + h(x)

is well defined and smooth. Further, h(x) e [0, 1] for all x E M. If x E U

then h(x) > I and therefore h(x) = 0 which in turn implies h(x) = 1. If

x E M \ V then h(x) = 0 and therefore h(x) = 0. 1

Definition 2.1.7. A smooth partition of unity is a set of functions

f fa: M - [0, 11 IaC-A such that

(i) each point x E M has a neighbourhood which is only intersected

by the support of finitely many fa,

(") EaEA fa(X) = I for all x.

A partition of unity is subordinate to an open covering fUbjbEB if for

every a (E A there is a b (E B with SUPP(fa) C Ub-
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Theorem 2.1.1 (Existence of a partition of unity). If jUbjbEB is

an open covering of a real manifold M then there exists a countable

partition of unity ffjjjEN which is subordinate to jUbjbEB-

Proof. For each x E M let b(x) be an index with x G Ub(x) and ab(x) be a

neighbourhood of x with Ub(x) C Ub(x). Lemma 2.1.6 implies that there

exists a sequence 1Xj1jEN and a countable collection of open sets 1Vjj
such that

(i) each Vj lies in some Ub(x.,) and therefore Vj C Ub(xj);
(ii) each Vj intersects only finitely many Vj;

("’) M = UjEN Vj*

We can now apply the same argument to the collection of open sets Vj
to find a countable collection of open sets tWkIkEN such that

(i) each Wk lies in some Vj(k);
(ii) each )/Vk intersects only finitely many Wj;

("’) M = UkEN )/Vk *

By Lemma 2.1.7 there is for each k a function hk: M ---* [0, 1] with

hk (X) = 1 for all x G Wk, hk (X) = 0 for all x E M \ Vj(k) -
Since each Vj

intersects at most finitely many Vi for each x c- M we have hk (X) = 0 for

all but finitely many k. This implies that the sum x hk (X) is well

defined and smooth. Since each x lies in some Wk we have hk (X)
I for all x G M. Thus

hk (X)

E’ 1 hi (x)1=

is well defined and smooth. Property (i) of Definition 2.1.7 is satisfied

because each Vj intersects only finitely many Vi and supp(fk) c Vj(k).
Property (ii) follows directly from the definition of fk. Hence ffkjkEN is

a partition of unity. That it is subordinate to the open covering  UbjbEB
follows from supp(fk) C Vj(k) C Ub(.,.1(,)). I

Remark 2.1.2. In Lemma 2.1.7 and Theorem 2.1.1 it was necessary to

restrict to the case K = R. If K = C, both results are wrong in gen-

eral. This is so because complex-differentiable maps are automatically

analytic, i.e., can locally be written as a power series. This would be

impossible for the function h in Lemma 2.1.7.

2.2 Vector bundles and the tangent bundle

F-p. 5 j
In ordinary calculus, the derivative Dfof a map f : K’ -4 K’ is the lin-

p. 62]

ear approximation of f, i.e., it is defined by f(x) = f(a) + Dfla(x-a) +
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o(Jx - al) where o(Jx - al)/Ix - al --> 0 (x -+ a). To study the linear ap-

proximation of a map rather than the map itself is certainly one of the

most powerful approaches in mathematics and physics. Because of the

limit x - a -- 0 this approach is often referred to as working infinites-
imally. Until the middle of this century people spoke of infinitesimal

(or infinitely small) displacements (meaning the vector x-a if it was

’small’). This terminology can lead to misunderstandings but stresses

the main idea of analysis. While we will give a modern presentation, it

is a good idea to keep the ’infinitesimal way of thinking’ in mind.

The definition of a linear approximation of a function f rests on the

linear structure of Kn. In the general case of a manifold, such a structure

is not at hand. But it is possible to define a linear approximation of a

map in two steps. First, we linearise the manifold itself. This gives rise

to the the tangent space TaM at a point a of a manifold M. Then we

[P. linearise the map thereby obtaining a linear map Taf : TaM --+ Tf(,,)N
between (linear) tangent spaces.

We will linearise the manifold M by attaching an n-dimensional vec-

tor space to M at each point x C M. At first one may think that it is

sufficient to consider the product M X Kn and to define TxM JxJ x Kn.

However, this would introduce a global structure via the (global) prod-
uct x. In order to keep within the spirit of localisation, we can only
demand that such a product exists locally. This motivates the following
definition.

Definition 2.2.1. A k-vector bundle (E, 7rE; M) over an n-dimensional

manifold M is a triple consisting of a (k + n) -dimensional manifold E,
and submersion 7rE: E -- M such that

(i) For each x c- M is (7rE)_1(x) a k-dimensional vector space over

K,

(ii) for each x c M there is a neighbourhood U and a diffeomorphism

0: UxK
k
- (7rE)

- 1
(U) 7

where for each y E U the restricted map

V)y: Kk __4 (7rE) -I(Y)

is a linear isomorphism.

M is called the base manifold, 7rE the projection, Ey := (7rE)-I(Y)
the fibre over y, E the total space, and 0 the bundle chart or local

trivialisation.

The set of tangent spaces of a Manifold forms again a manifold of a special
type, a vector bundle. While we will construct many special vector bundles
and general vector bundles are of importance in gauge theory, their general
definition is not central to our discussion.
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We will often just speak of the vector bundle E instead Of (E, 7E, M) -

Notice that this is just a localisation of M X Kk. We call (E, 7TE) M)
trivial if there exists a local trivialisation of the form 0: M X Kk -- E.

In this case, E can be identified with M X Kk. An example of a vector

bundle which is not trivial is given by the M6bius band.

Example 2.2.1 (M&bius band, continued from page 53)). The M,5bius

band M is also a vector bundle. The bundle projection is given by

7rm(x) (Wi)-’ o pi o Wi(x) where pl: R2 --4 R2 is the projection

(XI, X2) (x’, 0) and i E 11, 21 is an index with x E Ui. It is clear that

this vector bundle is not trivial.

Definition 2.2.2. Let E be a vector bundle. A map a: U C M ---> E

which satisfies IrE(U(X) == x for all x E U is called a section of the vector

bundle E.

A collection ful, ... 7 9k I of sections such that

spanfa, (x) ,... 7 Uk (X) I =:::: Ex

for all x E U is called a frame of E.

The following definition will play a role later on (cf. Theorem of Frobe-

nius 2.5.3).

Definition 2.2.3. Let (E, 7TE, M) be a vector bundle. A vector subbun-

dle (F, 7rF, N) of the vector bundle E consists of a submanifold F of E

and submanifold N of M such that

(i) IrF (7E) IF: F --4 N defines a vector bundle structure with base

manifold N,

(ii) Fy is a vector subspace of Ey for all y G N.

2.2.1 Construction of the tangent bundle

p. 62F 
In affine geometry we had distinguished between points x E A’ and

p. 65]
translations (or vectors) in the associated vector space Kn. A translation

v: x F- x + v is a global concept. Notice that a translation is originally

thought of as moving the point x along the curve yv: [0, 1]  -* An, t  -+

x + tv to its endpoint. The velocity vector of the curve is v which may

be regarded as the infinitesimal (but in this case exact) approximation
of -yv. Given an arbitrary smooth curve y: (a, b] , An, t  --> -y(t), we

take its derviative as its infinitesimal approximation at a given point

x =: - (to). Taking all these velocity vectors at x we obtain a vector space

TxAn which is attached to A’ at x. This vector space is in a natural

way isomorphic to the associated vector space given by the translations.

In the following we will transfer these ideas to manifolds. The main
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difficulty we have to solve is the lack of an associated vector space in

which we can take the derivative of a curve.

Let M be a smooth manifold, x c M and -y: (-E, E) --+ M be a

smooth curve in M which passes through x at parameter value 0. Another

smooth curve (-e, e) with x =  (O) is called x-equivalent to -y if
d

(W o -y) 10
= (W o

0.
This definition is independent of the chosenTt dt

chart and puts all curves through x with the same velocity into one

equivalence class [-y,,] -

Definition 2.2.4. Let M be a smooth manifold and x cz M. The space

of all equivalence classes [-y,,] is called the tangent space of M at x and

denoted by T,,M. Its elements are called tangent vectors.

We must show that TxM has indeed the structure of a vector space.

Choose any chart (U, W) centered at x. This chart induces a bijective
map

d
(9 ’: TM --- K’, [-y,,] (W - -y) 10x

dt

which we can use to induce on T,,M the vector space structure of Kn.

Let a E K and [-yx], [px] E T.,M. Then we define

a[-yx] := (eP)-l (aRP([7x]))x x

and

[-Yxl + [AXI := (ex ((9x ,([-Yxl)) -1 OXI) + (9x

This vector space structure is independent of the chosen chart. In fact,
let (V, 0) be another chart centered at x and denote (9 ’ o ((9P) byx x

(9’P,w-’. Then we have
x

(a(9x((9x I ([,Y.]))

= (’9") - 1
0 e" - (en

x
(eO-1

(aev o
-1

o e"([-Yxl))x x x X) x

= ((9V))-1(9V) ’W-1 0 (90 ,

x x x x (I Yxi))
I,)-, (01(9 -Y-D)= (ex X, Q

and analogously

10([-Yxl) + ex(ex 1QAxD)(ex
,P)

- I (e’O 0 (,g")-l .,e"([-txl)(ex ) (9x x
0 ((9x

x x

+ (9w 0 (e b)-l , e b([Mxj)x x x

x x x x  x
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+ ((gqp,w-I)-I ,
.x

191, (1YXD)
[_YXD + ex(ex 0 QYXD)(ex

We call the set TM := UxcmTxM the tangent bundle of the manifold

M. The vector spaces TxM can be understood as infinitesimal models [p. 63 1]

of M at x. I p. 65

Proposition 2.2.1. Let M be a smooth manifold. There is a natural

vector bundle (TM, 7rTm, M) associated with M such that (7rTM) (X)
TxM for all x E M.

Proof. Let TM = UXEM TxM and define 7rTM x. We choose an

atlas IA, (Pa)IaEA of M and define the structure of a smooth manifold

on M through the atlas f ((7rTM) -I (Ua)) Tfa) I where

-I
(Ua) -4 Kn  Kn’ ’/x I xTfa: (7rTM)  -4  Oa (X) 0) 19’p’ (/ [XD -

The bijections bijections

X Kn
x

_1(v)Oa : Ua -4 (7rTM)
-I

(Ua) i (X, V)  -4 (ef"’) -

are then diffeomorphisms such that (Oa --> TxM, v 1-4 (ew-)-’(v).)x: Kn x

are linear isomorphisms.

p. 65 1

It is not always practical to work with equivalence classes. We will there- [I p. 75]

fore also give an equivalent definition which is better suited for calcula-

tions at the cost of being less intuitive. The key observation is that each

tangent vector 1-yx] E TxM induces a map

D If E Coo (U, K) : U is an open neighbourhood of x K,

f  -4

d
f 0 -Y(O).at-

This map has the following properties.

(i) D[,yl.,,, is K-linear,

(ii) for any smooth functions f , g: M --- K the derivation property

.;
(fg) = D[,yl. (f)g (x) + f(x)D[,yl. (g)D[,yl.,

holds,

(iii) for any open neighbourhood U of x and any two smooth functions

f, g which coincide in U we have (f (g).

This motivates the following



66 2. Analysis on manifolds

Definition 2.2.5. A map

v : If c- C’ (U, K) : U is an open neighbourhood Of xj ----> K

which satisfies properties (i)-(iii) above is called a derivation. The vector

space of derivations at x with addition and multiplication being defined

pointwise, (avx + bw,)(f) = a(v.,(f)) + b(wx(f)), is denoted by D ,.

Remark 2.2. 1. The reader may wonder why in our definitions derivations

act on If E C’ (U, K) : U is an open neighbourhood of xj instead of

the simpler set C’ (M, K) -
For K =: R we could indeed have chosen

C’ (M, K), but in the case K = C there exist only very few globally
defined differentiable maps in general. In fact, in the extreme case of the

complex torus only the constant functions are smooth. However, locally
there is always an abundance of smooth functions.

Lemma 2.2. 1. If f : M --+ K is constant in a neighbourhood of x, then

v.,(f) = 0 for all derivations vx E Dx-

Proof. Let f (x) = a. vx (f) == avx (f/a) = avx (1) = av., (I - 1) = avx (1) -

I + a - lvx (1) = 2avx (1) = 2vx (f). I

Theorem 2.2.1. Dx is an n-dimensional vector space.

Proof. We know already that Dx is a vector space and have therefore

only to show that dirn(Dx) = n. Let (U, W) be a chart centered at x

and let x’: U --+ K the ith coordinate component of W-’. Observe that

we have for any h: W(U) --+ K the identity h(y) = h(O) + Enj , hi(y)y’,
where hi is defined by hi(y) :=

1 ah(t’) dt and y is the ith coordinateL --5 
1

in Kn. Applying this identity to the function f o W- : W(U) K we

obtain
n

f(Y) = f (X) + Xi (Y) (f - W-’) i
- W-’ (Y)

Hence for any derivation vx E Dx to f we get

n

vX(f) = VX (f (X)) + E (vX (Xi) (f 0 WI
i
- WW

+ X, (X)vX ((f -  0-’)
i
-  0)) -

The first summand vanishes by Lemma 2.2.1 and the last term vanishes

since x’(x) = 0. From vx (f) = Ei’- I (f o  p-’), o W(x)vx (x’) we see that

vx is uniquely determined by the n numbers vx (x1), . . . , VX (Xn). I
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Definition 2.2.6. Let M be a manifold, (U,  p) be a chart, and

vi

p": Kn --, K, vs.

vn

Then x’: U --> K, y  -4 p’ o (p(y) is the ith coordinate function with

respect to (U,W) and the collection (xl,...,x’) a coordinate system.

The pointwise basis defined by axi(xi) = Jj3 is called the

CauBian basis associated with (U, W) and the vector fields axi are called

GauBian vector fields. We will often simply write 0i instead of

Corollary 2.2.1. Let M be a smooth manifold and (U, W) be a chart

centered at x E M. For any derivation v., E D., and any function f E

C’(M) we have

n n

.’9f 0 W-1
V-M = Evi’9xif = E v%

axi
i=1 i=1

where ST is the usual partial derivative in Kn.
D7

 ,M is canonically isomorphicProposition 2.2.2. The tangent space T

to Dx. The isomorphism is given by the map i: TM --+ D,,, iQ-1] ,)(f)
A

o y(to) and well defined.dtf

Proof. Clear by construction.

Hence we can dispend with the symbol Dx and always use TxM instead.

Our first definition using curves has the advantage to work also in in-

finite dimensional settings. However, we are only concerned with finite

dimensional manifolds and derivations are more practical to work with

than equivalence classes of curves.

Definition 2.2.7. Let M be a manifold, x E M and U be a neigh-
bourhood of x. For any v., E TxM and f E C" (U, K) the number

vx * f : = df(vx) : = vx (f) is called the derivative of f in direction vx,

The map df : TM --> K, vx  --> df(vx) is the differential of f

2.2.2 The derivative of maps between manifolds

In the preceding section we have linearised the manifold. We can now

linearise differentiable maps f : M --+ N between manifolds thereby ob-

taining linear maps Txf : TxM ---> Tf(x) N.

Definition 2.2.8. Let M, N be manifolds, x E M, and 0: M -4 N be

a differentiable map. Then Txo: TxM --> TxN, Txo(v)(f) = v(f o V)) is

called the tangent map (Or simply the derivative) of V). We will often
denote T,,o by 0.,
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Observe that in terms of equivalence classes of curves, the derivative of

,0 is given by [-(.,]  -4 [V) o -yp(,,)] which is clearly the linear approximation
of the curve 0 o -y at O(x).

It is instructive to calculate the tangent map with respect to a coor-

dinate system. Let (U,  o) and (a,  3) be charts of M and N respectively,
and denote by (x1, . . . , Xn) and (5 1......; k) the associated coordinate

systems. In these charts 0 has the representation T1 ==  p o 7P o  o-’ and

we calculate

n

C

,O.V(f) =
W - V) 0

E vi’9xi- Y - 0) = V’-
Oxi

i=1

vi’9f 0 (V, aP 0 0 Y
= V

,9T13
a;,7

a.V ’9xi W .

-if

Hence with respect to a coordinate system, the tangent map 0" is just
the derivative of the map T1. Again we see the tangent map Txo is the

linearisation of 0 at x.

The following is an immediate corollary of Definition 2.1.6 and Lemma

2.1.3.

Corollary 2.2-2. Let M be a manifold and x E M. A continuously
differentiable map 0: M ---+ N is a submersion (respectively, immersion,
local diffeomorphism) near x if and only if TxV): T M - T b (x)N is

surJective (respectively, injective, bijective).

2.3 Tensors and tensor fields

Tensor fields play a central r6le in geometry and physics.
Differential forms are not absolutely necessary for the theory of

space and time. However, their usage has many advantages and they
also provide a very natural way to define integration. In particular,
the integral theorems of Stokes and Gaufl have a very simple, com-

mon form when stated in terms of differential forms (cf. Theorem

2.5.5). Unfortunately, the introduction of differential forms requires
some technical preparation.

Some readers may therefore wish to skip the sections dealing with

differential forms on first reading.

The tangent bundle of a manifold is the collection of its linear approxi-
mations JTMJ. In order to make use of the simplifications arising from

linearisation we need to express physical and geometrical objects in terms

of maps which are adapted to the linear structure of T,,M for all x E M.

We will see later in the book that the notion of a tensor field provides
a good framework for this (here still rather vague) idea.’In the present
section we simply introduce tensor fields as mathematical concepts.
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2.3.1 Algebraic preliminaries: tensors

In linear algebra, the concept of a tensor unifies vectors, linear forms,
bilinear forms, linear maps, determinants etc. Let V be an n-dimensional

vector space over K. Then its dual space V* is the vector space of all

linear maps V ---> K. It is easy to see that V* is isomorphic to V. In fact,
if jej,... , enj is a basis of V then the set 10...... O’l C V*, defined by
Oi (ej) = 6 ,, is a basis of V*. It is uniquely defined by fel.... 7 e,,, I and

called the dual basis.

While the isomorphism of V and V* defined by ei i- Oi depends on

the choice of basis lei,..., enl, there is a canonical isomorphism tv of

V and V**.

tv: V V*,

V tv(v): f  --> f (V) E

In the following we will freely make use of this canonical identification

V   V** given by tv and write v instead of tv(v).
Using this identification we not only can view a vector v as a linear

Tap V* ---> K but also a linear map A: V --> V as a bilinear map

A: V* x V ---> K, (f, v) i, A(f, v) = f(Av). This reasoning can be

generalised and we are let to the following unifying concept.

Definition 2.3.1. An (")-tensor is a map
8

0: V X ... X VXV* X ... x V* --+ K

s copies r copies

which is linear in each of its entries. We say that 0 is an r times co-

variant and s times contravariant tensor or a tensor of order The

space of all (r)-tensors is denoted by Tsr(V).
s

The most important special cases are Too (V) K, To’ (V) = V, and

T,O(V) = V*. A bilinear form such as a scalar product is an element of

T20(V) and a linear map V --4 V is an element of T11(V).
For an explanation of the terminology "covariant/contravariant" see

Remark 2.3.1 below. First we will need to define the components of a

tensor. This in turn requires the introduction of the (natural) "tensor

product" & of tensors which generalises the usual product of numbers.

Definition 2.3.2. Let 0 E Tsl(V), 0 G Tpq(V). Then we define the ten-

0 & 0 E
,+q

sor product LS+p (V) by

0 0 0 (Vil ... ) V87 1011 ... ) wp) W11 ... I
Wr, 77,.... 77q)

:= O(Vi .... 7 Vs, Wi I ... IWr) O(wj, wp, n1,
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Observe that the tensor product is not commutative.

Lemma 2.3.1. The tensor product is associative.

Proof. Let 0, 02 7 03 be tensors of order (ri), (r2), (r3) respectively. Then
81 82 83

we have

(01 0 02) (D 03 (V1 I VS1 I VS1 +I I-  V81+821 V81+82+11 V81+82+831

Wil ... I

ri
,

r, + 1, - , rl+’r2+1, Wrl+r2+1, . . .
,
W

rl +r2 +r3

(01 0  b2) (V1 , ... I vs, VS1 +1 7 VS1 +,92 7
W

I ... I ,)rl,

,,rl+l, . . . ,

rl+r2 )

X 03 (Vs I +S2 +11 * ’ ’ I VS1 +32 +S3 I
)rl +r2 + 1, ri +r2 +r3

01 (vi .... I V"’ W1 I ... I

rl )02 (Vs, +1, - ’ * I VS1 +82 1

r1+1
I ... I

rl +r2

X 03(VSI+S2+11 ...
7 VS1 +82 +,93 ,rl+r2+1,. ,rl+r2+r3)

and analogously

01(9(V)2 (D 7P3)(V1 .... IVSIIVSI+ll )VS1+827VS1+S2+11’ IVSI+S2+S3)

Wil ... I rl, Wri +11 ... 1W
ri +r2+1

,

rl +r2 +1 rl+r2+r3)

01 (vi .... I VS1, ( )II . . ., rl)

(02 (9 ?P3)(Vsj+17- - * I VS1+S2 7 VS1+82+11’ I VSI+S2+S3’

,,ri +
... I

ri +r2’ rl +r2 + 1, . . . , Wrl+r2+r3)

01 (vi, I vs 1 ,
W

i

I .... U)rl)’02(Vsl+l .... I VSI+S2’

,rj+1....
I

rl+r2 )
+r2 +1 rl+r2+r3X V)3 (VS1 +S2 +11 1 VS 1 +82 +S3

rl

Lemma 2.3.2. If jej.... I enj, 101, on I is a pair of dual bases then

the set

f0" (9 ... (9 0’. (2) ej, (9 ... (9

forms a basis of the space T,(V) of all (") -tensors. in particular, we
S

have dim(T,,r(V)) = nrn’.

Proof. The set of tensors f0" (9 0i. (9 ej, (9 ... & ej,, I is linearly
independent. In fact, let be numbers such that

n

V) = E V)ij’---j"’0i1 (9 ... (9 0i. (2) ej, (9 ... (9 ej, = 0.

j3 .....j’-1



2.3 Tensors and tensor fields 71

Then 0 ::::::: O(ek, .... I e-k,, ,
011

, ... 1017,) = 01’-*1’,,, hence the tensors are all
k, ...

k

linearly independent. Conversely, we see that for any tensor 0 E Tr(V)
and any v,.... v, E V, , 77’ E V*

we have

n

O(Vi .... Vs, 17, ......r O(eii I ... I ei, I
oilI...

1 Oil Oil

&oil 0 ej, ej,, (VI .... VS, nil
.... 7r).

The dimension of T,,(V) is nrn’ since there are exactly n’ choices of

ordered t-tuples (with possible duplication) from a set of n elements. I

Definition 2.3.3. Let V) c Tr (V) and fei, e,, I be a. basis of V and

01, on be the associated dual basis. The numbers 0," defined by

n

ii ...
i,’ 0’, (9 ... (9 0’. & ej, (9 ... (9 ej,,

are the components of 0 with respect to the basis fei, en

In the physical (and old mathematical) literature it is the standard to use

for contravariant entries upper and for covariant entries lower indices.

This provides a checking mechanism for the syntactical correctness of

tensor formulas and also simplifies the interpretation of formulas involv-

ing tensor components. In Remark 2.3.4 below we will introduce a very

effective notation (Einstein’s summation convention) which is prevalent
in the physics literature and has at its core the difference between up-

per and lower indices. Unfortunately, many modern mathematicians use

lower indices for all entries on grounds of "aesthetics".

Remark 2.3.1. The terminology "covariant/contravariant" arose in the

19th century and refers to the transformation of tensor components un-

der transformation of a given pair of dual bases f ell . . . , e,, 1, f Oil . . Onj.
Let v == I:n Viei (E V, W = I:ni=1 i=1

wiO’ E V*, and A = Ei,j Aiei 0 Oj E

T11 (V) be an invertible linear map. Then fjI, . . . ,  n 1, f  ’, . . . ,
 n I de-

fined by ji = Aei and 0’ o (A-’) are also a pair of dual bases and

Enwe can write v f),Ei, W = rni=1 _i=l CoiO’. For any w G V we have

n n n

W(W) w(z-v%) ib’w (Aei) Cv’A’i-w (ej)

n n

Ok (e Cv’AiWk  j) Cv’A3j wj
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Hence cDi _Tj’=, Aj’wj. The components of w transform covariantly,
i.e., in the same way as the basis vectors ej.

Similarly, for any A C- V* we have

n n n

v (A) v ( j v ( j 0’ - A-’)  j0’(A- v)

n n

 j(A-1)jVkoiej  j(A-)’ Vk.
k k

i,j,k=l i,j,k==l

Hence f)’ = I:n -1)’vk, the components of v transform contravari-k=l(A k

antly with respect to the transformation A, i.e., opposite to the basis

vectors ej.

Another natural operation which is defined for tensors is their "contrac-

tion".

Definition 2.3.4. Let T,’ (V) and f el, en; 0...... 0’ 1 be a pair

of dual bases. The contraction of 0 with respect to the  th contravariant

slot and the 9th covariant slot of 0 is defined by

C,rO(vl, Vr-1, W1....

,Pth slot
dth slot

n

6- Vr- 1, W .... 1
02, WS-1)

We have to show that this definition is independent of the choice of basis.

In fact, if 1 1, - - - I  nj, is another pair of dual bases then

there exists a linear isomorphism A: V --+ V with ej = AEj . En 1 Aj j
and Ok = 6k o A-’ = En (A-1) 03

-

.
We calculate

j= 3

qro(vi, . . . , Vr_ 1, W1 I ...
I

n

-,
O(Vl,..., ej,..., Vr-1, W1, - - -,

0i’. - -,
W,

n

A1j*(A-’)k’O(vj,---, j.... 7Vr-17W17 -

i,j,k=l

n

O(Vl) - - - jji - - -,Vr-1,W1, - - -’0

Lemma 2.3.3. Let V be a vector space over K and G TqP(V), E

T,r (V). Then

and (C9 Cq+sr (0Z
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Proof. This follows immediately from the definitions. I

Another class of natural operations on tensors are symmetry operations.
We introduce below the two most important symmetry operators, sym-

metrisation sym and anti-symmetrisation alt of entries. First we need

some technical preparation.

Definition 2.3.5. A permutation of the numbers (1,...,p) is a bijec-
tion

up: f(il’. - .,ip) : fil’. - .,ipl = 11, -Al

- 1(il’. - .,ip) fil’...’W = 11’.. ’Al.

If orP is a permutation we write a(ij, - ip) = (i,(j), - - . , i,(,)). The set

of all permutations of the p integers j1,...,pj is denoted by Sp.
A transposition is a permutation which permutes only two consecutive

elements and leaves all other elements fixed.

Lemma 2.3.4. The set of all permutations Sp forms a group (the per-

mutation group) and is generated by transpositions.

Proof. That Sp forms a group is clear since the collection of all bijections
of a given set forms a group where the composition of maps is the group

operation.
Let a(ij,...’ip) be any permutation. Starting

with the p-tuple (i 1, ip) we can use successive transpositions in order

to move the index i,(p) to the last position. Assume now that i,,(k) i ...
I

i,(p) are at positions k, . . . , p. Since ia(k- 1)  fio-(k) ,... I ic(p) I it must be

at one of the positions 1, . . . ,
k - 1. It follows that we can Move i.(k- 1) to

position k - 1 by successive transpositions which all leave the last p - k

positions invariant. By induction we have shown that there is a finite

sequence of transpositions which is equivalent to a.

Lemma 2.3.5. There is a natural homomorphism

sign: Sp --+ (1-1, 11, .)

of the permutation group into the group of two elements which is deter-

mined by sign(-rp) = -1 for all transpositions -rp.

Proof. We prove this lemma by showing that every permutation a is

either the product of an even number of transpositions (sign(O-) = 1) or

the product of an odd number of transpositions (sign(a) = -1).
First we show that the identity permutation id is not the product

of an odd number of transpositions. Assume that id is the product of

finitely many transpositions and denote by n1k the number of all those
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transpositions which interchange the numbers I and k. The number n1k

must be even since at the end 1 must be on the same side of k as at

the beginning and since there are no other transpositions which inter-

change k and 1. If we set n1l = 0 then the number of all transpositions is
p

1=1 (Epl=k n1k) which is the sum of even numbers and therefore even.E
Let now a = -ri o ... 0 Irk = -71 0 ... o, i where Ti,,Tj are transpositions.

Since id = (-ri o ... 0 Irk)
- 1

0 1 1 0 ... 0 tl = (Tk)
- 1

0 ... 0 (-Fl)-’ 0 ;F, 0 ... 0 ;F_J
is the product of k + 1 transpositions the number k + 1 must be’even.

Hence k and I are both even or both odd.

A permutation up acts in a natural way on a tensor 0 c TO (V).
p

Definition 2.3.6. For any 0 E TO(V) and any permutation up E Spp

we set up0(vi, vp) (v,,, (1), . . . , V,,, (p)).

Lemma 2.3.6. For any permutations -rp, up E SP and any tensor 0
T’(V) we have (up o Tp)V) = -rp(apV)).p

Proof. Let vi, vp E V. We calculate

(UP -r,)0 (vi, Vp) (V,P.-,, (1), V-P .-,, W)

(V,, (", (1)), V-,, - (-,, W)

07po (VTT, (1)) * (p))

Tp (CPO) (V, (1), W

which implies the first equality.

Lemma 2.3.7. The maps

sym: To 0
alt: To 0

p
M T M, P, M Yp M,

1

up V) V)
I

sign(up)up 0
P!

I:
P!

1:
"
E S7, ESI,

are linear projections.

Proof. We only prove the lemma for the operator alt since the proof
for sym is completely analogous. That alt is linear is clear.from the

definitions. For given V) E To (V), vectors v1, . . . , vp and any permutation
p

-Fp we have

alt,0(vl, . . . , vp) sign(up) 0(v,,,, (1).... I Va" (p))
P!

Y_
E Sp

sign(up)sign (,Tp) V)(v,,,,
P!
E -T, (1), V-P -’,W)

,pEST,



2.3 Tensors and tensor fields 75

= sign(,rp) alt
- - - , v_gp)),

where we have used that R,: Sp Sp, up 1-4 apTp is a bijection. It

follows that

alt o alt 0((vj,..., vp) = - sign(-rp) alt V)(v
P!
E -" (1), - - - , 1’r’,W

7-7, E Sp

1
= - Y alt O(vj,..., vp)

P!
-7, E Sp

= alt?P(vj,..., vp)

and therefore alt o alt = alt. I

Definition 2.3.7. A covariant tensor V) E T ,(V) is called symmetric

(respectively, anti-symmetric) if for all s-tuples of vectors (vl,...,v,)
and all permutations a, of (1, . . , s) the equality

 b (vi, V’) = 0(v,’ (1), - - -V"’ (,))
(respectively, 0(vi, . . . , v,) = sign(o-,)0 (v,,, (1) 7 ... 7 va" (S)))

holds. Symmetric and anti-symmetric contravariant tensors are defined
analogously. p. 65

I p. 84

The set of all r times contravariant and s times covariant tensors on

TXM, where x E M, form a vector bundle which generalises the tangent
bundle.

Proposition 2.3.1. Let M be an n-dimensional, smooth manifold. The

set T ,M = U. CMTr(TxM) of all
.

-tensors carries a natural vector(r)
bundle structure.

Proof. Let (U,,  o,,,) be an atlas of M. Then with each chart U,, we can

associate a map

n"n’
0,: U T,,r(TxM) - 0.(U) x K

xEU,,.

W.W,
....isEfl ....nj

where 0", are the components of the tensor Ox with respect to the(a) ii ...J.

GauBian basis Oxi ......9xr,,. It is clear that each tensor Oy E T,"(TyM)
lies in at least one of the sets TrU,,, := UxEu,,, Tr(TxM) (a c A). To see

that the collection (TrU,, 0,) forms an atlas of TrM we have to show

that for each pair of indices (a, 0) the map

0, o V), 1: V)O(TrU, n TrUe) -- 0,(TrU,, n TrU,8)
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is a diffeomorphism. We denote the coordinate system associated with

(UO,  oo) by (y’, . . . y") and let x E U, n UO. For any vector v E TxM we

En i a.can then write v V xi. En ,
v’ 0.,i where

i=1 a i= 0

V3. =n (WC, - ( 00)-’)j
v

Oyi

In other words, the column vectors (v,,,), (va) consisting of the compo-

nents of the vector v with respect to our charts are related by (v,,) =

DW,,e (va), where we have set W,O =  o, o (WO)
- 1. Let w be a 1-form. The

row vectors (wo), (wO) consisting of the components of w with respect to

the charts must then be related by (w’) = since these

components are defined by w(v) = (w") - (v,,) = (wO) - (vo) for all vectors

v. By the same argument it follows that the components .......... and
I I

(a) i

Ozi ... T,

,

are related by
()3) ji

oki ... k, oil ... i,

(0) ilj
I<il ... i7.<n
1  jl ... j,   n

Hence the components and (0,3) of 0,, with respect to the charts

(U, W,,), (Up, W,3) are related by a linear isomorphism D,,,3. Thus the

map 0,,, 0 (y, (WO (y), (D,,3 (W,3))) is indeed a diffeomor-

phism. We have shown that TM is a manifold. That TM is also a vector

bundle follows since for any x c M and any chart (U, W,) the map

Tr(T M) Kn"n" Ox --, (0.) is a linear isomorphism.x

By construction of T,,rM we have TM = TOW.

Definition 2.3.8. Let M be a manifold and r, s E N U  01. The vector

bundle T,,rM is called the tensor bundle of r times contravariant and s

times covariant tensors.

The tensor bundle TIOM is also denoted by T*M and called the cotan-

gent bundle of M.

The bundle of s-forms is the subbundle A’Mof T,M defined by

w Ei A’M -# w(vj, - - -, Vi.... I vj.... vp) = -W(V,,...,Vi.... I vi7 ... vp)

for any set of vectors fvi, . . . , vp I and any pair

(i, P C f 1, - - .,Pl.

The bundle of s-forms will play a fundamental r6le in Sect. 2.5 on dif-

ferential forms (which may be omitted on first reading). We will give an

equivalent definition in Lemma 2.5.8. See also Definition 2.3.9 for the

vector space analogon As(V).
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In the rest of this algebraic section we will introduce the space of

p4orms, a special class of tensors which generalises the notion of de-

terminant and plays an important r6le in the analysis on manifolds.
For instance, it is fundamental to the integration over a manifolds (cf.
Sect. 2.5.4 below) and in the theory of differential systems (Bryant,
Chern, Gardner, Goldschmidt, and Griffiths 1991). However, the use-

fulness of this concept will only become clear in applications and not

on this technical algebraic level.

The material presented here will not be used before Sect. 2.5. The

reader may therefore wish to postpone the study of the rest of this

section.

It turns out that the symmetry operator sym is not of particular impor-

tance. On the other hand, tensors 0 which satisfy alt oo = 0 generalise
the determinant and therefore, deserve a special definition.

Definition 2.3.9. A form (of degree p) (or simply p-form) is a tensor.

E To (V) with alt 0 The vector space of all p-forms is denoted by
P

AP(V) = alt (To(v)).P

The tensor product 0 induces a product A of forms:

Definition 2.3.10. The exterior product (or wedge product) A is the

bilinear map

A: AP(V) x Aq(V) --+ AP+q(V),

(W, 77)  -4 W A 77 :=
p!q!

alt(w 0 TI).

Remark 2.3.2. The normalisation factor (p+q)! is not the only possible
p!ql

choice and may appear to be rather unnatural. Other factors are also

common, in particular the alternative definition w7\,q = alt(w & 77). We

have chosen our factor in order to minimise similar combinatorial factors

in formulas to come (see Remark 2.3.3).
Our choice agrees with the choice of Bryant, Chern, Gardner, Gold-

schmidt, and Griffiths (1991) and (Abraham and Marsden 1978), but is

different from the normalisation factor in (Abraham and Marsden 1967)
and the normalisation factor in (Kobayashi and Nomizu 1963).

Lemma 2.3.8. The exterior product is associative and anti-symmetric.
More concretely, let w E AP(V), n E Aq (V), and A E Ar(V). Then the

formulas

(i) (u)An) AA =wA (77AA) and

(ii) W A 77 = (_1)pq 77 A W.

hold.
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Proof. (i): We calculate

(w A  7) A A =
((p + q) + r)!

alt((w A n) & A)
(p + q)!r!

-

((p + q) + r)! (p + #
alt ((w &  7) 0 A)

(p + q)!r! p!q!

-

(p + q + r)!
alt(w Oq (D A).

p!q!r!

Analogously one shows w A (n A A) _ (p+q+r) I
alt(w Oq 0 A) which provesp!q!r!

associativity.

(ii): Let 7-p+q E Sp+q be the permutation given by Tp+q(l ... ) P +

q) = (q + 1, . . . , q + p, 1, . . . , q). Then we have sign(Tp+q) = (_I)pq and

Tp+q (W (9 n) (V1 Vp+q) W 0 77 (Vq+ 17 ... 7 Vq+pi Vl,. Vq)

77 (D W(V11 ... I Vp+q)

Using these formulas we obtain

w A 77
p!q!

alt(w Oq)

I

> " sign(0-,+q) ’7p+q(W (2) 77)
p!q!

,p+qESI,+q

sign(Up+q) sign(Tp+q) ’7p+qTp+q(W 0 77)
p!q!

L
,p+qESp+,l

= (_I)pq
1

sign(Cp+q)9p+q(?7 0 W)
p!q! ’PE

+qESp+q

= (_l)pqT, A W.

Lemma 2.3.9. Let wl
7 ....

wP E V* and irp E Sp.

(i) w
1
A ... A wP = sign(7rp)w"P(1) A ... A w", (P)

(ii) wl A * * * A WP = F,.,ES,, sign(up)wIz,(1) 0 ... 0 WIP (P),

(iii) wl A ... AwP = 0 if and only if the 1 -forms w 1, -
wP are linearly

dependent.

Proof (i): Since transpositions generate all permutations, it is sufficient

to prove this equality for a transposition

7rP (1 7.... i’j’...’n) =

But in this case the assertion follows immediately from Lemma 2.3.8.
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(ii): The assertion is clearly true for p = 2. Assume that it is true

for collections of up to q 1-forms wl....
I
Wq and denote for any Uq E Sq

the permutation (ij, .... iq+1)  -4 (Uq(il), ’07q(iq) iq+1) by tq+l(gq)-
Then we have

w1A ... A wq A Wq+1 (V,,. . . , Vq+l)
I

sign(,Tq+l)(wl A ... A Wq
q!

",

E
+jESq+j

W
q+1

(1)

E sign(-rq+ 1)sign(gq)W
q!

1:
T,I+iESq+l o-qESl

Wq (g Wq+1 (Vaq-Or,,+1(1)1 I VUqO’rq+1(q), VT,1+1(q+l))

Sign(tq+l (Uq) 0 Tq+l)W
1
(9 ...

q! ’Y’ Y-
qESq -,,+I ESq+j

0 W
q 0 W

q+1 (Vlq+ I (Uq) 07’,1+ 1 (1) 1 ’ * ’ 7 Vtq+ 1 (Uq) 0r,,+ I (q+ 1) )

1: Sign(Tq+l)W
1
0 ...

,T,I+iESq+l

(9 U)q(9 Wq+1
(1) (q))

(iii): If W 1, wP are linearly dependent we can assume that w 1 is
2

a linear combinations of w wP (otherwise we could renumber the

w ). There exist numbers ai (i 2,...,p) with wl aiw’. Hence
i=2

the right hand side of

P

W1 A ... Awp E Wi A U)2 A ... A wP

i=2

is the sum of products each of them containing some factor w3 twice.

Hence all summands vanish by (i).
If the forms w 1, wP are linearly independent then we can complete

them to a basis fw 1,
,
w’ I of V*. Denote the dual basis by fe 1, . . - , 6n I -

If w’ A ... A wP would vanish then so would wl A ... A w’. However, we

have

W1 A ... A Wn (el, e,)
all, E S",

sign(a,,)J1,,,(j) jn
a o,,,, (n)

a,, E S"’
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Lemma 2.3.10. If lei, en 1, 101’...’ Onj is a pair of dual bases then

the set

fO" A ... A 0" 1 I<il < ... <i,<n

forms a basis of the space AP(V) In particular, dim(AP(V)) (n).
p

Proof. First we show that this set of tensors is linearly independent. Let

be numbers such that

77 = E 77j, ...
i,O" A A 0" 0

ij< ... <i"

and let k, < ... < kp. Then 0 = 77(eki 7 ... , ek,) 77ki ... k,,, whence the

p-forms fO" A ... A O’ll ji, < ... <i,, are all linearly independent.

Conversely, we know from Lemma 2’.3.2 and alt(TO(V)) = AP(V)
P

that the set of vectors fO" A A spans AP(V). Since

0’7’(") A ... A 0"’(’P) == sign(up)O" A ... A 0"’

for all permutations up E Sp we can restrict to. those 0" A ... A O’P with

il < ... < ip,
The dimension of AP(V) is (n) since from a set of n elements there

p

are exactly (n) choices of ordered t-tuples without duplication. I
t

Definition 2.3.11. The map

J: V x AP(V) --> AP-’(V)

(V, W) 1--> V -i W: (wj’...’ wp-,)  --> W(V’ Wi, wp-l)

is called the interior product. If p = 0 we set v J w = 0.

Lemma 2.3.11. Let w E AP(V) and 0 E Aq(V). The interior product

satisfies v J (w Aq) = (v -i w) Aq + (- 1)P w A (v Jq) for all p-forms W and

all q-forms 7).

Proof. For notational purposes we set v = wo. For any vectors wl,...’

Wp+q-1 G V we have

(WO J W) A 77(Wl 7... 7 Wp+q-1)

(P 1)!q!
E sign(Up+q-l)W(WO,W,P+,,-,(l),

+q- I ESl,+q-1

7WO’j,+q-1(P-l)) X 77(WO’T,+q-I(P) ......W,,,+,,-I(p+q-1))

and

(-1)Pw A (wo J 71) (Wi, - . . i Wp+q- 1)
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I)P
Sign(Tp+q- 1)LO (W7-T,+,j-j (1)1 W7-j, +,,-I (P)p!(q - 1)!

E ....

’rp+q-1ESp+q-1

X 77(W0IW-rp+q-I(P+1),’-IWIp+q-1(P+’1-1))*

We consider now all possible permutations of the ordered set (wo, wl,

.... Wp+q-l)- We can divide them into two subgroups, the group SP
p+q

where wo is in one of the first p positions and the subgroup Sq where
p+q

it is in one of the last q positions. Using this notation we can write

wA?7(wo, wl,..., Wp+q-1)

=

1

( 1: sign(6’p+q)U) (W&,,+,, (0) 7 ID&,+,, (1), - - - , W&,+,, (p- 1))
p!q!

&,+, E S,’,’+ q

X 77(W&I,+q (P) W&p+q(p+q-1))

+ E sign( p+q)U) (W. ,,+, (0)) .... 10, p+"(P-1))
Sq
P+q

X ?7(W- p+q(P)7W’ p+q(P+I)I .... Wr,,+q (p+q-

Consider the first summand. For each ( p+q E Spp+qwe can shift wo to

the first entry of w by executing (&p+q)-1(0) transpositions. Hence there

is a unique permutationCp+q-1 E Sp+q-lwith

W(W&P+q(0)1* IW&p+q(P-1))?7(W&p+q(P)I

= (- 1) (&p+q)-1(0)W(WO I Wlp+q
7 WO’Z)+q (P-

X  7(W,,+q (p), * * " I WO’p+q (p+q- 1)) -

Observe that &p+q is the Composition Of (&p+q)- 1 (0) transpositions and

the permutation

i
Up+q (i) for i > 0

0 for i = 0.

This implies sign(&p+q) (-1)(4+q)-I(0)sign(9p+q)- Since wo can be in

each one of the p possible entries of w we obtain

I

E sign(&p+q)W(W&I,+
q (0) 7 W&I,+,l (1) 1.... W&7,+,,(P-I))

p!q!
E S"

p+q

X ’7(W&p+q(P)l .... W&p+q(p+q-1))

-

P
sign(9p+q-I)W(W0, Wor,,+,I-j (1), - - - , W-p+q- I (P- 1))

p!q!

X q(W,P+ll- I (P) I I WUp+q- I (p+q-
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= (Wo J w) Aq(wj,...’ Wp+q-1).

Consider now the second summand. An analogous argument for - p+q
Sq
p+q

allows us to move wo to the first entry of 17. In this case we obtain

an additional factor (-l)P since ’ p+q is the Composition Of (’ p+q)_1(0)
transpositions, a permutation

i
’rp+q (i) for i > 0

0 for i = 0,

and the p transpositions which move wo from the first entry of w to the

first entry of 17. This implies Sign(’ p+q) = (-I)P(-I)( P+’)
-,

(O)T(07p+q)
and we obtain

.1.

p!q!
E sign(’ p+q)U)(W_ p+q(0) 7 W’ p+q(l I... 1 M 7’+’J(P_ I))

q
E ’’q

Sp+q

>( 77 (W’ p+ q (P) W- ,,+,(p+q-1))

(-’)P- L E Sigll(Tp+q- 1)W (WTI,+q- 7’ 1 Wr,,+q- 1 (P))p!q!
’rp+q-jESp+q-1

X 77 (WO, W-r,)+q- I (p+ 1) 1... 7 W-r,,+,,_j(p+q-1))
= (-1)PW A (Wo J 77)(Wi,..., Wp+q-1).

I

Finally, we relate the theory ofp4orms to the determinant of linear maps.

To motivate the definition below recall the following from linear al-

gebra. Assume that we have an Euclidean scalar product (, -) and an

orthonormal basis f ej,...’ e"j. If fol’...’ onj is the dual basis then one

can use the n-form 01 A ... A on in order to measure the volume of parallel

epipeds. For any vectors bl, . . . ,
b, G V one defines the volume of the

parallel epiped spanned by these vectors to be 01 A ... A 0n(bi, . . . , bn)-
This number depends on the chosen scalar product but not on the or-

thonormal basis. The determinant of a linear map B: V -* V is often

defined as det(B) := 01 A ... A on (b 1, . . .
, b,,) where bi = Bej.

This definition of a determinant obscures the fact that the deter-

minant is independent of the choice of scalar product. The following
equivalent definition is probably the most natural way to introduce the

concept of a determinant.

Definition 2.3.12. Let V be an n-dimensional vector space, W be a

k-dimensional vector space over K, and A: V -4 W a linear map.

(i) The pull-back of 0 under A is the map A*: TO (W)  ---> T’
P P

(V)
defined by A*0(vi, . . . , vp) (Avi, . . . , vp).



2.3 Tensors and tensor fields 83

(ii) Let tz G An(V) \ 10} and assume that V = W. Then the deter-

minant det(A) of A is the number defined by A*/-t = det(A)M.

We have to show that the map det is well defined. First observe that A*

maps A,(V) into AP(V) and recall that An is 1-dimensional by Lemma

2.3. 10. Hence A*y must be a multiple of M. If A is any other non-vanishing
n-form then there exists a number a 7-1 0 with A = ap. Hence we have

A*A(vl,. Vn) = A*(a/-t)(vl,..., vn) = a/-t(Avl,..., Avn)

=a det(A)M(vj,..., vn) = det(A)A(vj,..., vn)

which implies that our definition for det(A) does not depend on the

chosen n-form.

Lemma 2.3.12. Let V be an n-dimensional vector space over K,

A: V -- V

e
.... onj be a. pair of dual bases.be a linear map and fel.... 7 n1, fO’7

Let the components A3 be defined by Aej =: rn
1 A3j ej. Then we have

 j=

A* (Ol A ...AO’P ) == ( E sign(up)A" A"’ ( P)) Oil A ... AOiP.E
0,7, Ul 17P

jl<...<jp U7,ESP

In particular we have

det(A) sign(un)A’,, - An
a M a,, (n)

an E S ,,

Proof. We calculate

A*O’l A
...

A O’P (ej,, . . . I ej,)

= E sign(up)O"(Ae,,,(j,)).....O’P(Ae,p(jp))
orp E Sp

sign(o-p)A" An
01P 01) UP 07,

Up E S7,

Remark 2.3.3. We have noted in Remark 2.3.2 above that our combina-

torial factors are not the only possible choice. If we had chosen A (cf. Re-

mark 2.3.2) instead of A, we would have had to re-define vjw = p v _j w

in order to preserve Lemma 2.3.11. Another advantage of our choice is

that the simple formula

01 A ... A on(e - - -, en) = I

holds for any pair of dual bases fei1iE{1,...,nj7 joi LE 1,...,nj -
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2.3.2 Tensor fields

p. 75

[Ap.7
5

P. 8p. 8In this section we introduce tensor fields which are tensor valued maps. [I p. 8

All physical and geometrical structures we will encounter can be defined

in terms of tensor fields or maps of tensor fields.

Definition 2.3.13. The vector space of all smooth maps

0: M U T,M with OW E T,(T M) Vx c M

xEM

is denoted by TI(M). These maps are called (’)-tensor fields. Often we
S

will write Ox instead of O(x).
A (1) -tensor field is a vector field.

0

A (0) -tensor field w with
P

W(vj’... 5 vi) ... 7 vj.... vp) = -w(vi.... Ivil ... I vi’... VP)

for any set of vectors fvl,...,vpl and any pair (i,j) C j1,...’pj is

called a differential form of degree p. A differential form of degree p is

often simply called a p-form.
Let Z be another manifold and f : Z M be a smooth map. An

(’)-tensor field along f is a map 0: Z Ts’(M) such that O(x) E
S

T" (Tf (x) N) for all x G Z.-

Vector fields and differential forms along f are defined analogously.

If Z is a submanifold of M and f: Z --+ M its canonical inclusion

then we also say that 0 is a tensor field along Z.

Let (x’, . . . I Xn) be a coordinate system and denote by 91,. ..,
an its

GauBian basis. Its pointwise dual basis is given by the derivatives (dx’,
... , dx’) (cf. Definition 2.2.7). With respect to these coordinates, any

(’)-tensor field 0 can be written as
S

Ow Oi.1 ... Z" (X),Oil (9 ... 0 aj, 0 dx-11 (9 ... (D dx3
31 ...j.

1<ij ... i,.<n
1  jj ...j,,  n

where the 0’. are functions. They are the components (or component
31 ...j.

functions) of the tensor 0 with respect to the coordinates (x xn). If

,) tensor field we will often drop the tensoris a covariant symmetric (0
product sign 0 in order to indicate that the symmetrisation operator

sym has been applied,

sym(O)(x) = 1: 1 < ji ... j, :5 nOj,...j, (x) dxjl
...

dxj,

If N is a second manifold and f : M --4N a smooth map then each

tensor field T-’(N) induces a unique tensor field f* 0 E To (M), its
P P

pull-back. This tensor field is defined by
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f*0., (vl,..., vp) := Of ( ,) (Tf(vi),..., Tf(vp)),

where Tf : TM --+ TN denotes the derivative of f (Definition 2.2.8).
Analogously, each tensor field  c TOP (M) induces a unique tensor field

f,, c- TOP(N), its push-forward. It is defined by ..., WP) :=

of(.,) (wl o Tf,...,wP o Tf). If ?p c- T,(N) and g: M -- N is a local

diffeomorphism we define the pull-back of 0 by

g*,O(vl.... 7vS1W11 ... I Wr)

:= 0 ((g.(V,), -,g-(V ’), WT (WI)7 .... (g-,)* pr))
This definition agrees with the definition of pull-back above if 0 is a

covariant tensor field. The push forward of a tensor field  G T,(M) by

a local diffeomorphism g is defined by g* = (g-’) If s = 0 then

both definitions of push-forward agree.

Lemma 2.3.13. For every local diffeomorphism g: M -- N and all

tensor fields 0, 0 C Tr(M) we have

g*(ao + 00) = ag*O + Og*o,

g*(O 0  b) = g*0 (D g*O,

, O = C; g*o*cgg

Ifg fails to be a diffeomorphism, and 0, 0 are covariant vector fields then

the first two assertions are still true. Analogous statements also hold for
the push-forward.

Proof. The lemma follows directly from the definitions.

Remark 2.3.4. It is often practical to denote a tensor field 0 E T,1’ (M) by
its components Oal ... a, with respect to an unspecified GauBian basis. The

bi ... b,.

indices a,.... a, bi ... b, are "dummy indices" and their only purpose

is to give a convenient method for explicitly denoting the entries of the

tensor field. By convention, the tensor is characterised by the core symbol
0, so in general we have Oai ... a,

== Oc, I ... cr .6
bi ... b,,

c

1 ...

However, different
di ... d, 7 Od d,

tensor fields of different order can be denoted by the same core symbol
since it is clear from the number of co- and contravariant indices that

they must be different objects.
If a,,3 E K, 0,  are two (’) -tensor field, and V) is an -tensor field

S

we write

In some East European countries, some authors use conventions which are

the exact opposite of ours, i.e., they have in general 0,1...a, 0 Ocl ... C7.

bl ... b, dl ... d,

It seems likely that this variant will fade in the near future.
dl ... d,
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(aO + ,)
al ... a,

a0ai ... a,
+ 00al ... a,

bi ... b,,
bi ... b,, bi ... b, 

(0 . )ai ... a,+j jai ... a,. /a, ... ai 

bi_b,+, ’Pb1
... b  bi ... bii 

 ,)ai
... a,.-,

Oal ... aj _i caF%+l ...a_1
Cg

bi ... b_1 bi ... b,;-l cbg+1 ... b,,-l

Since the indices determine the entries explicitly, we can write

Oal ... a,V)ai-..ai Oal ... ai Oai ... a,.

bi ... bs bi ... bg bi ... bizi bi ... b ,

The notation for contraction is often called the Einstein summation con-

vention: If in a product of tensors one index letter appears as an upper

index and somewhere else as a lower index then it is understood that one

has to sum over these indices in the corresponding coordinate expression.
We will also use this notation in order to write a tensor with respect to

a basis, for instance,

n

Aaaa 0 dXb = Aaaa 0 dXb.
b b

a,b=l

Symmetrisation and anti-symmetrisation are denoted by

SYM(O)i. ..... i"
= and alt(O)i. .....

i, = 0[i. ..... i,;]

An analogous notation is used for contravariant tensors and for the case

that symmetrisation or anti-symmetrisation is only applied to a subset of

entries. We use the delimiters I to indicate that a certain subset of entries

is not symmetrised (respectively, anti-symmetrised). For instance,

Oab[cdJ(ef)gJhJ
i(jJkJ1J(mn)Jo)

indicates that the entries corresponding to the indices fc, d, hJ are anti-

symmetrised and that the entries corresponding to the indices f e, f1,
Jj, 1, ol, Im, nj are each symmetrised.

This abstract index notation should not be confused with the com-

ponents of the tensor field with respect to a given basis. While all for-

mulas appear to be identical, in the former case, the tensor is referred

to, whereas in the latter case one simply has a collection of K-valued

functions.

The main advantages of the abstract index notation over the usual

notation without indices are that tensor operations are easy to remem-

ber since tensors look like their components and that even complicated

multiple contractions and tensor products can be understood at a glance.
The main disadvantage is that many formulas look unnecessarily clumsy
because of the jungle of indices involved. In the physical literature, the

abstract index notation is usually preferred and in the mathematical lit-

erature the notation without indices is prevalent. In this book, we will
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use both notations. However, unlike in most of the physics literature here

we will not reserve certain indices for special ranges. Moreover, we will

sometimes write the summation sign in order to indicate the range.

2.4 Vector fields and ordinary differential equations

If -y: K --+ M is a curve then for each t E K the vector  (t) -= Tt-y(l) is a

vector in Ty(t)M. The following question arises naturally: given a vector

field V on M, does there exist a curvey with  (t) = V7(t)? With respect

to a chart, the answer is given by the fundamental theorem for ordinary
differential equations which establishes the existence and uniqueness of

solutions. Because of its importance we will state it below. However

this theorem should really be treated in standard courses on analysis

(for mathematicians) or mathematics for physicists. See also (Dieudonn6
1960, chapter 10) for a proof in a slightly more general context.

Theorem 2.4.1 (Fundamental theorem for ODEs.). Let U c K’,
V c K’, j C K be open subsets, and

f:j’xUxV-+Kn, (t,x,y) -->f(t,x,y)

be C’. For each (to, xo, yo) E j x U x V there exists a neighbourhood
j x f) c j x V of (to, yo) and a unique map -y: (t, y) F--> -y(t, x) E ]Kn

with

d-y (t, y)
dt

f (t, -Y (t, Y), Y)

for all (t, y) E j x V and -y(to, yo) = xo. Further, 7 is C’.

This theorem translates straightforwardly to manifolds.

Theorem 2.4.2. Let M be a smooth manifold and V be a vector field
on M. For every X E M there exists a subset j C K and a curve

-yx: J --+ M with -yx(O) = x and  (t) = Vy(t) for all t E Jr.

If VX : 0 there exists a neighbourhood U of jxj x 101 C M x R

such that the map F: U -- M, (t, y) 1--4 Ft (y) = -yy (t) is well defined.

Moreover, the map y  -4 Fi(y) is a local diffeomorphism for each i, and

its inverse is given by F -i.
For t, s small enough we have Ft o F, = Ft+,.

The curve -y is called an integral curve and the map Ft the flow of V.

Proof Let (U,  o) be a chart centered at x. Then the fundamental theorem

for ordinary differential equations (Theorem 2.4.1) implies that there

exists a solution 0(t) of the differential equation

d
NO = ( O-V)’3(t)

dt
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with 13(0) =  o(x). Hence 7,, =:  o-’ o 0 is an integral curve of V with

-/ ’ (0) = X.

That F is smooth and well defined follows from the fact that integral
curves depend smoothly on parameters (cf. Theorem 2.4.1). The map

(Fi)-’ is given by (Fi)-’(z) = -y_(i) where -y- is the locally unique
integral curve of -V with -y-(O) = z. Hence Fi is differentiable and has

a differentiable inverse.

The equation Ft+, = Ft oF, follows from local uniqueness ’of solutions
of differential equations and the fact that both t  --> Ft+, (y) and Ft oF, (y)
are integral curves of V with the same initial value. I

An integral curve -y: j -4 M of a vector field V is called maximal if

the existence of an integral curve  : j --+ M with j C j C K implies
j = J. By the lemma of Zorn and local existence of integral curves

each integral curve is contained in some maximal integral curve. The

following Proposition shows that in the case K = R maximal -integral
curves are unique.

Proposition 2.4.1. If K = R then there is a unique maximal subset

j C K and a unique solution -y of - (t) = Vy(t) defined on j.

Proof. Let -y,  be integral curves of V with -y(O) =  (O) = x. We must

show that these integral curves coincide on the intersection j n j of

their domains J, j. In order to do so we will prove that the set IC =

It E j n j : -y(t) =  (t)j is both open and closed. Since in the case

K = R the set jnj is the intersection of two open intervals and therefore

connected, this set must then coincide with 1C. It is clear that IC is closed.

Let t E K and (U,  o) be a chart centered at  = y(t) =  (t). Given local

coordinates, the problem of finding an integral curve of V reduces to

solving a system of ordinary differential equations. An application of the

fundamentat theorem for ordinary differential equation (Theorem 2.4. 1)
proves that there is a unique local integral curve 0 through  0(: ). Hence
there is a neighbourhood of t such that -/ =  on this neighbourhood. I

The following theorem implies that, locally, all non-vanishing vector

fields are alike.

Theorem 2.4.3. Let M be a smooth manifold, x G M, and V be a

vector field with V(x) 7 0. Then there is a chart (U, W) centered at

x such that and the integral curves of V are given by t

(P-
1 (t, X2, ...’ xn).

Proof. Let N be an (n - I)-dimensional submanifold of M through x

which is transverse to V (i.e., RV(y) (D TyN = TyM for all y c N). Let

(V, 0) be a chart of N centered at x and denote the flow of V by Ft.
There is an E > 0 such that the map
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f (- 6, 0 X 0M M, (2.4.1)

1, 2’..
.’ n) F -1(X2....(X X X X, (0 1 X’)) (2.4.2)

is well defined. The differential of f at 0 is an isomorphism since

FO = id and
df(xl,. X’)

V(X) =A 0.
dx )(01

0

Hence there exists a neighbourhood VV of 0 where this map is an dif-

feomorphism. The pair (U, W) = (f(W), (f
- 1) ju) is therefore a chart

centered at x. For any y E U denote by (yo, prNM) E R x N C R x M

the unique pair defined by Fy,) (prNM) = y. Then we have  o o Ft (y) =

f
- 1

o Ft (y) = f
-’

o Ft+yo (prNM) = (t + yo, 0(prN (y))). Hence the inte-

gral curves of V are indeed the curves t F--+  o‘(tX2’...’Xn). It follows

immediately that  o. V = Ox 1
-

I

Given a vector field V, one can define the derivative of a tensor fiels

in direction V.

Definition 2.4.1. Let x E M, V) be a tensor field, U be a vector field,
and Ft the flow of U. Then

XU’O(X) := ((d)
,

Ft*,O) (x)
dt

It=0

is the Lie derivative of 0.

Here (-!!-) jt=O is the usual derivative in vector spaces. In fact, the expres-dt

sion Ft*V) denotes a tensor field which is defined on a neighbourhood of

x if t is fixed and small enough. In particular, this tensor field can be

evaluated at x. As a function of t this gives a curve in the vector space

T’r (TXM)
The Lie derivative measures the change of 0 along V.

Lemma 2.4.1. Let V be a vector field. Then the Lie derivative in di-

rection V is a derivation, i.e., for any tensor fields  p,,O the formulas

.Cv( O 0 0) = CVW 0’0 + W 0 -PVO,

-COW + 0) = -Coo + 40.

hold.

Proof. These formulas follow immediately from the properties of deriva-

tives. I
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Theorem 2.4.4. Let U, V be vector fields and f a smooth function.
Then

XUf =Uof and

.CUV*f =U*Vof -V*Uof.

Proof. The first equation follows immediately from

d d d
.Cuf = Ft*f (x) = f oFt(x) == df - Ft (x) df(Ux).at-It=0 Tt I t=0 (dt

It=o

Let X E M and (U,  p) be a chart centered at x. There is a neighbourhood
V C U of x and a number e > 0 such that Ft (y) is well defined and

satisfies Ft (y) E U for all for all (t, y) E (- 6, E) x V. An application of

the Taylor formula to the map t i--+ f o F-t o  o-’ implies the existence

of a smooth map j: (-,E, c) x  o(V) -- R with f o F-t o W-
1 (z) = f(z) +

tj(t, z) for all (t, z) E x V. The map gt(y) := j(t, w(y)) satisfies

f o (Ft) (y) = f(y) + tgt (y) for all y E V and we obtain

d
(Ft*V)., f-dt I t=o

d
((F

"

V)
 

t f) ==

d
(((F-t),,V),, 9 f)

dt lt=o dt It=o

d d
=::

dt It=o
(((F- t) * VFt (x)) 0 f) =dt I t=o

(VFt (x) e (f o F-t))

d d
- (VFt, (x) * (f + t9t)) = - (V * f)Ft(x) + Vx 90dt I t=o dt It=o

(U 0 V 0 f)X - (V 0 U 0 f),

where in the last step we have used

(V 0 gO)X == V 0

d
f o (Ft)

- 1
(-) Vx 9 df

d
(Ft)(dt It=o )

X

= ( dt lt=o

= Vx 9 df
d

(F-t) (-) (V 0 U 0 f),it-lt=o

Theorem 2.4.4 shows that the Lie derivative of V in direction U is the

commutator of U and V. This motivates the following definition.

Definition 2.4.2. If U, V are vector fields then we call [U, V] = CUV
the Lie bracket or the commutator of U and V. Vector fields commute

if their Lie bracket vanishes.
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Commuting vector fields are of particular interest since GauBian vector

fields 49,,k, 19.,1 are necessarily commuting. The following lemma gives the

converse to this observation.

Lemma 2.4.2 (Geometri’c interpretation of the Lie bracket).
Two vector fields U, V have vanishing Lie derivative, CUV = 0, if and

only if their flows commute.

Proof Denote the flows of U and V by Ft and G,. The equation Ft o G,

G, o Ft implies that F-t o G, o Ft = G, is the flow of V. Hence we have

V = jd-,,(F-t o G, o Ft) = T(Ft)-l (jd-,,G,) o Ft = Ft*V and therefore
ds ds

_pUV = ( d ) t=0 Ft
*
V = (-.4-) t=0 V = 0.

dt dt

Conversely, assume that XUV = 0 which is equivalent to - !- Ft
*
V = 0.

dt

Since Fo
*
V = V an integration yields (Ft) * V = V for all t. This implies

that s 1--4 F-t o G, o Ft is an integral curve of V. From the uniqueness of

integral curves we get F-t o Gs o Ft = G, for all t, s. I

Corollary 2.4.1. Let M be a n-dimensional manifold and fU1,...’ U"T
be a collection pointwise linearly independent, pairwise commuting vector

fields defined on an open neighbourhood of x E M. Then there exists a

coordinate chart (V,  p) centred at x whose Gauflian basis vector fields

satisfy Oxi = Ui.

k
Proof. Denote the flow of Uk by F and let

t

O(X’,...,x’) = F.1, o ... o F.1, (x)

for sufficiently small (xl,...,x’) E K’. Since the vector fields Uj are

pairwise commuting so are their flows F j (cf. Lemma 2.4-2). Hence we

have for every i E fl,...’nj

n) = Fx i o Fx1, o ... 0
-1

0 P+1 0 ... o F; , (x).O(X11 ... Ix _P i_l Xi_1

This implies V).(Ei) =

d (Xi , p(X1’...’xn)) = Uj for the standard

basis JE1,...’ Ej of K’. Since the vector fields f U1,...’ U,,j are linear

independent the map 0 has maximal rank and is therefore a local diffeo-

morphism. Let VV C K’ be an open neighbourhood of 0 such that O(z)
is well defined for all z E W and one-to-one on W. We can now define

A W) = (V)()/V)l 0-1). 1

Corollary 2.4.2. Let M be a 2-dimensional manifold and U, V be vec-

tor fields which are at each point linearly independent. Then M admits

local coordinates (XI, X2) such that a,,i 11 U anda,,2 11 V.
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Proof. By Corollary 2.4.1 we. only have to show that there exist functions

f, h with [fU, hV] = 0. We calculate

0 = [fU, hV] = VfU(hV) - ’7hVfU

= fh17UV + fdh(U) - fh17VU - hdf(V)U
= fh[U, V] - hdf(V)U + fdh(U)V
= fh QU, V] + d ln(h)(U)V - d ln(f)(U)V).

Let wu, wV be the 1-forms which are dual to U, V. Then any solution

(f, h) of the uncoupled system of linear ordinary differential equations

0 = d ln(h) (U) - wV QU, V]), 0 = d ln(f) (V) + wu ([U, V])

satisfies [f U, hV] = 0. This system of differential equations can be solved

by the fundamental theorem for ordinary differential equations 2.4. 1. 1

In the following sections we will encounter various kinds of tensor deriva-

tiv,es. It is therefore practical to formalise their common properties.

Definition 2.4.3. Let D be a map which maps tensor fields into tensor

fields. If it satisfies

(i) D(T,(M)) C T,’(M),
(ii) D(W 0 0) = D(O) 0 W + V) 0 D(W) ("product rule"),
(iii) D commutes with contractions,

then D is called a derivation.

Corollary 2.4.3. Let M be a manifold and V be a vector field on M.

The Lie-derivative Xv is a derivation.

Proof. We have to verify only the third property. This follows from

Ft*Cr^o = CrFt*o and the fact that Ft*o  -4 CfFt*0 is linear (so the
S 8

derivative d
can be interchanged with this operation).dt

Proposition 2.4.2. Two derivations coincide if they coincide on vector

fields and junctions.

Proof. Writing an arbitrary tensor field V) in a coordinate representation
we obtain

Do = D(0’1- ‘,9j, 0 ... (9 aj, 0 dxjl (9 ... (9 dxj,
ii ... j.,

r

+ E’O" - - - ",9j, 0... & D(ai,) 0... 0 aj, 0 dxjl (9 ... 0 dxjl
ii 3,

+ aj, & ... & aj, (2) dxjl (3 ... 0 D(dx3") (9 ... (9 dxjl.
3,

t=1
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Hence we only have to show that D is uniquely determined for tensor

fields w E EO(M). But this follows from D(w(V)) = D(C’(w & V))I I

Cll(D(w&V)) = Cj1(DwOV+wODV)) = Dw(V)+w(DV) for arbitrary
vector fields V and tensor fields w E 710 (M) -

I

Recall that vector fields can be considered as derivations acting on func-

tions. We show now that the commutator of vector fields can be gener-

alised to arbitrary derivations.

Lemma 2.4.3. Let D, b, be derivations. Then the commutator

[D, D] := D o D - D o D

is also a derivation. Moreover, the Jacobi identity

[D, [D, b]] + [D, [D, D]] + [D, [D, D]] = 0

holds.

Proof. For the first assertion we only need to check that the product rule

is satisfied. This follows from

DoD(WOO) D(DWOV)+W&DO)

and the fact that the term .6 o 0 Do + D o 0 J5V) is symmetric with

respect to D and A

The second assertion is a special incident of a general property of

commutators of the form AB - BA: The summands in

[D, [D, DI I + [D, [D, Dfl, [D, [D, DI I
1 2 3 4

D o b o b - D ob o b -(f) o b o D - b o b o D)
5 4 1 6

+ b o D o f) - b o b o D -(D o b o o D o b)
3 6 5 2

+ J5 o b o D - o D o D -(D o D o D - D o D o D)

0

cancel pairwise.

Corollary 2.4.4. For any vector fields U, V, W we have

IU, IV, W] + 1W, [U, V11 + IV, [W, U11 = 0.
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Proof. Clear since vector fields can be considered as derivations acting
on functions. I

Proposition 2.4.3. For vectorfields U, V, we have X[U,V] = [XU, _PV1

Proof. Clearly, both X
[U, V] and [.C U, XV] are derivations. By Proposi-

tion 2.4.2 we only need to show that they coincide on functions and on

vector fields. For any function f we have [.CU, XV] o f = CUXV 9 f -

-PV.CU*f = UoVof - Vo Uof = [U,V] of = C[U,Vjf. Hence the

formula holds for functions. Corollary 2.4.4 implies for any vector field

W

[.CU,.CV]W XU(.CVW) - CV(XUW) = [U, [V, W]],- [VI A W11

[[U, V], W] = X
[U, V]

W.

The Lie bracket of vector fields does not only transform naturally with

respect to diffeomorphism but there is also an especially simple relation

if one considers smooth maps which are not necessarily diffeomorphisms.

Proposition 2.4.4. Let f : M -+ N be a smooth map and V, W be vec-

tor fields on M. If f’, T7V are vector fields on N with Tf(V,)
and T’f(W ,) = fVf( ) for all x c M, then the formula TxfQV, W])

[V, W] f (x) holds.

Proof. Let  o: N R be a smooth function. The assertion follows from

V(W(V o f V((Tf(W) ( o)) o f (Txf(V) (Tf(W) ( o))) o f

(V(W(w))) 0 f

2.5 Differential forms

While it is possible to avoid the usage of differential forms, they are

such an important tool in analysis and mathematical physics that I

have chosen to include them in this book. Differential forms will be

used occasionally in the book, for instance in the treatment of electro-

magnetism.
The reader can skip this section on first reading but she or he is

advised to read the motivation below.

This section builds on the theory of anti-symmetric tensors which

is presented in Sect. 2.3.1 starting at page 77.
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Differential forms are totally anti-symmetric covariant tensors. There are

areas in mathematics and physics where this anti-symmetry proves to

be of great importance.

(i) Systems of partial differential equations: Recall that by the lemma

of Schwarz the higher derivatives of a C’ function commute. If one

has a system of partial differential equations, any solution must sat-

isfy this "integrability condition". For the existence of a solution it

is often sufficient to ensure that this integrability condition holds.

Since anything symmetric applied to something anti-symmetric van-

ishes, such conditions can be naturally expressed by the requirement

that certain differential forms vanish.

(ii) Integration: Recall from linear algebra that the volume spanned by

n vectors Jbi,..., b,j in K’ is given by the determinant I det(B)l
where B is the linear map given by Bei = bi and enj is the

standard basis of K’. As the determinant is totally anti-symmetric,

differential forms are its natural generalisation. The lemma of Poin-

car6 (Theorem 2.5.2) and the theorem of Stokes (Theorem 2.5.5)
which unifies the classical integral theorems of Gau.B and Stokes are

good examples for the superiority of,using differential forms.

(iii) Physical applications: There are also direct physical applications

of differential forms. They are a prerequisitive for understanding

gauge theories (cf. (Bleecker 1981)) of elementary particles and in

particular the theory of electromagnetism (cf. Sect. 5.2.3).

Recall from Definition 2.3.8 that the set APM = U,,CM AP(T,,M) of all

p-forms is a vector subbundle of T’M.
P

Definition 2.5.1. We denote the set of all differential forms of degree

p by OP(M) E To(M) : alt o w = wI (cf. Definition 2.3.13).
P

If M is a real manifold we will sometimes denote OP(M) by S?P (M, R)

(cf. Remark 2.5.2 below)
The definitions and properties of p-forms given in Sect. 2.3.1 carry

over to differential forms in a pointwise manner.

Lemma 2.5.1. Let w,,q be differential forms and V be a vector field.

(i) For any smooth map 0: M ---> N the exterior product satisfies

O*(W Aq) = O*W A O*n.

(ii) If 0: M --+ N is a local diffeomorphism then 0* (v I w) = (0* v) _j

(O*w) holds.

(iii) The differential form w can uniquely written as

U) (X) =: 1: Wi’...j, (x) dx" A ... A dx p,
1<il< ... <i,,<n

where (x...... xn) is a coordinate system.
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Proof. The proof follows directly from the definitions.

There is a simple formula which relates the Lie-bracket and the interior

product.

Lemma 2.5.2. Let w be a differential form and U, V vector fields. Then

the formula [U, V] _j w = CU(V I w) - V -i.CUw holds.

Proof. If w is a 0-form then we have [U, V] _j w = 0 by definition. The

right hand side vanishes for the same reason. If w is a 1-form then we

have by the derivative property of CU

[U, V] J CV = W (.C UV) = XU(W (V)) - (.CUW) (V)
= CU(V J W) - V J.CUW.

Assume that the assertion of the lemma holds for 1-forms and p-forms.
For any (p + 1)-form w we find p-forms w’ and 1-forms W with w

I:n q’ A w’. Hence we getj=1

[U, V] J [U, V] J A

n n

QU, V] J 77’) A w’ - A [U, V] J w’

n

(-CU(V J 77’) - V J -CU?7’) A w’

A (.CU(V J w’) - V JXUw )
n

(.CU(V Jq’)) A w’ - (V J -CU?7’) A w’

A (_CU(V J w’)) + 77’ A (V J _CUw’)
n

(CU ((V J 77) A w’) - (V J 77’) A _C Uw’

V J Un) A w’) - (-C U77i) A VJwi

CU A (V J w’)) + (.C Uq’) A V J w’

V J A (XUw’)) - (V J 77) A CUw’
n

(CU (V J (71’ A w’)) - V J (-CU(77’ A w’))

CU(VjW) - VjxUW.

Hence the assertion follows for arbitrary degree by induction.
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By far the most important construction for differential forms is the ex-

terior derivative which will be introduced in the following theorem.

Theorem 2.5.1. For each p E N U f01 there is a unique map

d: QP(M) --> S?,’+’(M)

such that the following properties hold:

(i) d is K-bilinear,

(ii) d o d =: 0

(iii) d(w Aq) = dw A 71 + (_I)qW A d77 for all q-forms w and r-forms

77Y

(iv) For f c S?’(M) (i.e., functions f: M ----> K) df coincides with

the usual differential.

Definition 2.5.2. The operator d of Theorem 2.5. 1 is called the exterior

derivative.

Observe that for the definition of the exterior derivative we do not need

any additional structure. This fact indicates that in many applications
it will play a fundamental r6le. In comparison, the Lie derivative of a

tensor field is only defined with respect to a given vector field.

Proof of Theorem 2.5. 1. First we show that d is a local operator, i.e., if U

is an open set with compact closure and w,,q c QP(M) satisfy WjU =,qlu
then (dw)jU = (dq)ju. To see this let V be an open set with f) C U and

h: M --+ R be a smooth open function with hjV = 0 and hlm\a = 1.

Since h(w -,q) = w -,q we obtain from (iii)

d(w - 77) = d(h(w -,q)) = dh A (w -,q) + hd(w - 77)).

This implies (d(w - 77))1V = 0 since both dh and h vanish on this set. By
the arbitrariness of V we have therefore proved (dw),U == (d?7)lu.

Since d is a local operator we can restrict to chart neighbourhoods.
We will prove the theorem by showing that for each chart (U, W) there

is a unique operator d which satisfies properties (i)-(iv) above. Let W (E

QP(M) and write w = El<il< ... < i, <n wi,...j, dx" A ... A dx’T,. Properties

(i)-(iv) imply

dw d Wil ... ip
dx" A ... A dx’,

1<il< ... <i,,<n

E (d(wil ... jyj A dx" A ... A dx’,,

1<il< ... <i,<n

+ Wj’... j,,
d(dx" A... A dx’T,))
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Y d(wi,...i,,) A dx" A ... A dx"’

1<il< ... <i,<n

P

+ E(-l)j-ldx" A ... A dx’.i -I

I<ii< ... <i,<nj=l

A ddx’j A dx’.i+’ A ... A dx’T’

E d(wi,...i,) A dx" A ... A dx’P

I<il< ... <i,,<n

Thus we have shown that dw is uniquely defined if it exists. Furthermore

this explicit formula also guarantees existence once we have shown that

dw :-= El<i,< ... <ip<,, d(wj,...jP) A dx" A ... A dx’,, satisfies (i)-(iv).
Properties (i) and (iv) are clear. For (iii) we calculate for w E S?P(M)

and 77 E f2q(M)

d(w Aq)

d Wil ip%, j, A
dx" A ... A dx’p A dxjl A ... A dxjq

I<il< ... <ip<n
I -; jj <... <j,<n

E dwi,...i,,,qj,...jq A dx" A... A dxi, A dxj’ A... A dxjl

1<ii< ... <ip<n
1: jj <... <j,: n

+ Y- Wj,...jPdqj,...j, A dx" A ... A dx’p A dxjl A ... A dxjq

I<ij <... <ip<n
1: ji <... <j,: n

E dwi,...i, A dx" A ... A dx’P A 77j, ...j,
dxjl A... A dxjq

I<il< ... <ip<n
1: j, <... <jq<n

+ (-I)P A dx" A ... A dx’p

1<il< ... <i,,<n
1:5h< ... <jq<n

A dqj,...jq A dxjl A ... A dxjq

dw A 77 + (-I)Pw A dq.

Property (ii) is follows from

ddw = E dd(wil
... ip) A dx" A ... A dx’,,.

1<il< ... <i,,<n

and the fact that for any function f Cz C’ (M, R) we have

P
’of i

P
a2f

ddf = d dx = Y -dx3 A dx’ = 0,
axi axiaxj
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where we have used that a2f
is symmetric in i and j by the lemma

.9Xj’aX.j

of Schwarz. I

Remark 2.5. 1. Notice that this definition of d coincides with Definition

2.2.7 in the case of 0-forms.

Corollary 2.5.1. If N is a second manifold and 0: M --+ N a smooth

map, then we have 0*(dw) = d(O*w) for all p-forms w on N.

Proof. This follows since properties (i)-(iv) are obviously satisfied for

O*dw and since the exterior derivative is unique. I

Corollary 2.5.2. Lie derivative and exterior derivative commute: Let

w c S?P (M) and V E 701 (M). Then the equation

XVdw = dXVw

holds.

Proof. Denote the flow of V by Ft. Then we have d(Ft)*w = (Ft)*dw
and therefore

d.CVw = d
d

(Ft)*w
d
d(Ft)*w((dt )

It=0
it-

It=0

=

d
(Ft)*dw XVdw.

It=0

We wish to give a formula for dw which does not depend on a chosen

coordinate system. The idea is to link the exterior derivative to the Lie

derivative and the interior product.

Lemma 2.5.3. Let w E QP(M) and V C- 70’(M). Then we have

XVco = V idw + d(V Jw)

Proof. We prove the lemma by induction. If p = 0, then we obviously
have V J w = 0 and CVw = V 9 w = dw(V) = V J dw. Assume now that

the ’assertion has been proved for all q E f0, . . . , pj and let w E S?P+ 1 (M).
Since the formula which we want to prove is local we can restrict to a

coordinate neighbourhood U and write

(A) == E Wil ... ip+,dx" A ... A dx’P+’ = wi A dx’

ii< ... <i,,+l
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where wi G S?P(U) are suitably chosen differential forms. Recall that XV
is a derivation and that therefore

XV(wi A dx’) -CV (
1

sign(up+l)o-p+l (wi (9 dx’)
PM

,

E
7,+iESp+l

sign(up+l)uv+l (.CVwi (9 dx’
p!I!

,

E
p+lESp+l

+ wi 0 CVdxi))

CVwi A dx’ + wi A CVdx’
holds. On the other hand, we have

V J d(wiAdx’) + d(V J (wi A dx’))
= V J (dwi A dx’) + d((V J wi) A dx’ + (- 1)Pwi A (V dx’))

induction

= (V J dwi) A dx’ +(- 1)P+ldwi A (V J dx’)
induction

+ d(V Iwi) A dx’+(-I)Pdwi A (VJdx’)

+ I)P (- I)Pwi A d(V i dxI)
induction

= XVwi A dx’+ wi A XVdx’

where we have used d(V J dx’) = d(dx’(V)) d(.CVx’) CVdx’ (cf.
Corollary 2.5.2). 1

We can now use the preceding lemma in order to prove an invariant

formula for the exterior derivative.

Proposition 2.5. 1. Let w E QP(M) and V0, Vp be vector fields.
Then the exterior derivative of w is given by

P

dw (Vo, . . . , VP) E(- i)icvi (W (VO, Pi, Vp))
i=O

+ E (-I)i+jW(XVVj’V0.... I
Vi

I ... 1-17j I ... I
V

i
P)

O<i<j<p

P

)7 V(-I)ivi 0 Mvo’...’ P))
i=O

+
..... Vp)

O<i<j:! p

where means that the corresponding vector field is left out.
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Proof The second equality follows trivially from the first equality. We will

prove the proposition by induction. If w E S?O(M) then dw(Vo) = Voew

,
(w) which implies the equality in the case p = 0. Assume now thatXV

0

the assertion has been proven for q E f0, -pj and let w E S?v+’ (M).
Lemma 2.5.3 implies

dw(Vo, V 1) = (Vo J dw) (Vi, VP+1)

,--
indi tion

= CVOw(Vj,..., Vp+l) - d(Vo Jw)(Vl,..., V,+I)

= xv W(Vi, - Vi-1, -CVOVi, Vi+1, VP+1)
0
(W(Vi’..., V

i=1

induction

E(-l)j-,-Cvj((VO JW)(V1, .,Vj- I, Vj+1 VV+0)
j=1

inL tion

(_l)j-l+k-l(V I0 Jw)(.Cv V
j

k, VI

I<j<k<p+l

induction

-^ ------"I

Vj, - Vk, VP+1))

-C
VO (W(VI, VP+

P+1

- E(-1)i-1W(.CVOVj, V1, Vi-1, Vi+1 .... VP+1)
i=1

P+1

+ E -C
Vj (W (VO, V, I .... vj-17vj+17 ... I VP+1))

j=1

+ (_I)j+kW(XV ki, V 1’.. Jj, --,: ki -Vp+l))-jV O,V

1<j<k<p+l

P+1

E(-1)j.CVW(VO,...,Vj ..... VP)
j

j=0

+ E (_l)j+kW( k1,V( ....
;Vki - -Vp)jV 0’.V

O<j<k<p+l
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2.5.1 The lemma of Poincar,6

The lemma of Poincare is the generalisation of the following two facts
familiar to physicists.
(i) Every curl-free vector field has a local scalar potential and

(ii) every divergence-free vector field has a local vector potential.
The lemma of Poincar6 is a good example for the elegance of differ-
ential forms.

To give the reader a better idea how the lemma of Poincar6 arises we will

briefly recall the introduction of scalar and vector potentials and then

translate this discussion into the language of differential forms.

(i) Let F: U C R3
--+ R3 be a smooth map which satisfies rot(F) = 0.

Then for every x G U there is a neighbourhood V and a function

f : V --> R with F1 V = grad(f). In Mechanics this mathematical fact

is applied to conservative force fields F. The function f is called the

associated scalar potential.

(ii) Consider now a map V: U C R3
-+ R3 whose divergence vanishes,

aV1 aV2 aV3
x
+ 5x3

= 0. Then for every x E U there is a neighbourhoodaxr + =a
V and another map W: V --> R’ such that rot(W) = V. The map

W is called the vector potential of V, Vector potentials arise for

instance in the elementary theory of electromagnetism.

In the language of differential forms, these (and similar) results can be

treated in a simple, unified manner. To see this, we will briefly sketch

two classes of isomorphisms which will be studied in more generality and

more detail in Sect. 4.2.

The standard scalar product (")R3 of R3 induces an isomorphism
which maps vector fields to the 1-forms, V  --> 0 :::::::: (V7’)R3. The inverse

map is denoted by 0: w  --+ wO, where (W ’ )R3 = w. These isomorphisms
are will defined since the scalar product is non-degenerate. With respect
to the standard orthonormal basis this isomorphism just interchanges
column and row vectors.

The scalar product also induces an isomorphism between O-forms

and 3-forms and an isomorphism between 1-forms and 2-forms. Let

(X 1 ,X2,X3) be the standard coordinate system of R3 and set

*1 dxl A dX2 A dx3,

*dxl dX2 A dX3’

*dx
2 dX3 A dx’,

*dx
3 dxl A dX2.

This defines linear isomorphisms *: A’(R3) --, A3(R3) and *: A’(R3)
A2(R3) . They can be extended to 2- and 3-forms by demanding **w = w

for all forms in R3
-
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Observe that grad(f) = df0, rot(F) = (*dP) , div(V) = *(d * 0).
Hence the (i) and (ii) above relating F and f, V and W translate into

the assertions

(i) If the I-form P satisfies dP 0, then locally there exists a 0-form

f with df = P I

(ii) If the 2-form *0 satisfies d 0 = 0, then locally there exists a

I-form W with dW = *0.

The lemma of Poincar6 generalises these facts.

Theorem 2.5.2 (Lemma of Poincar4). Let M be a manifold and w

QP(M) with p > 1. If dw = 0, then for every x E M there is a neigh-
bourhood U of x and a (p - I) -form 0 E S?P-’(U) such that wjU = dO.

The proof of the theorem will be a corollary to the following lemma.

Lemma 2.5.4. Let M be a smooth manifold and define for any t E [0, 1]
the map

it: M --+ [0, 1] X M, X  --+ (t, X).

There exists a linear map K: Qq+ 1 ([0, 1] X M) _+ Qq(M) (q > 0) with

d o K + K o d =: (il)* - (io)*.

Proof. For w G Qq+ 1 ([0, 1] x M) and V1, ... i Vq E TxM we define

Kw,,(vl,...,Vq) = J0i(it* (at J w(t,x))) (V1 I ... I Vq) dt.

Let Vl,..., Vq+j be vector fields on M. Then, using Proposition 2.5.1,
we obtain

dKw(Vj,..., Vq+l)
q+1 1

E(_l)a-IVa t J W(t, X)) (VI, Z
..... Vq+l) dt

a=1
0

1

+ (_I)(a-1)+(b-1) it* (at J W(t,x)) ([Va 7 Vb] , V1....fo
I<a<b<q+l

va
ai ... i bi ... i Vq+l) dt.

For any vector field V on M we will denote the canonical lift of V to

R x M, given by (t, x)  - (07 V) E TtR (D TxM, by the same symbol V.

In the following it is notationally advantageous to write Vo for at. With

these notations and using [VO, V,,] = [at, Va] = [(,9t, 0), (0, Va)] = 0 the

(p + I)-form dKw is given by

dKw(VI.... 7 Vq+l)
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q+I

E(-l)a-IVa*j W(t,,)(V6,V1,---,Va,--.,Vq+j)dt
n

a=1 0

1

+ (-I)a+b W(t,x) (VO, [Va, Vb], V1 I

1<a<b<q+l
0

Va, Vb, Vq+l) dt

q+1

a
dt-

a=1

fo Va 0(W(t,x)(VO) V1, - -

-,
Va,

- - -, Vq+l))
1

- E (_l)a+b fo W(t,x) ([Va, Vb] i VO, VI....

O<a<b<q+l

....
Va, Vb, Vq+l) dt.

Analogously, Kdw is given by

1

Kdw(Vl,..., Vq+l) JO it*(at Jdw(t,x))(VI, Vq+i) dt

dw(t,x) (Vo, Vl,. Vq+l) dt

1 q+1

E(_I)aV
0 a=O

a x) (V( .... Vq+l))dt1
I

+  7- (_l)a+b W(t,x) ([Va i Vb] 7 V1....

O<a<b<q+l
fo

Vaa ...... b....
7 Vq+l) dt,

Taking the sum, d o K + K o d, all terms with a > I cancel and we arrive

at

(d o K + K o d)w(VI, . . . , Vq+l) = fl 19t 0 (W(t,,) (VI, Vq+l) dt
00

(iI)*W(V1’ Vq+l) - (iO)*U)(Vjj .... Vq+I).

Proof of Theorem 2.5.2. Let (V,  o) be a chart with  o(x) 0 and W(V)
f(Xl,...,Xn) : I:n J(Xa)2

a=
< Setting

n

U := W- 1(1 (x ...,xn) : E(Xa)2 <

a=1

and F(t, y) :==  0-1(t2W(Y)) we have constructed a smooth map F: [0, 1] x
U - U which satisfies F(O, y) = x and F(I, y) = y for all y E U.
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Since Fo i 1 is the identity on U and Fo io the constant map y  --+ x, we

have for any p-form w, (F o il)*w = w and (F o io)*w = 0. The assertion

follows now from

d o KF*w - K o dF*w = i*,F*w - io*F*w = w

and dF*w = F*dw = 0.

Observe that the proof of the lemma of Poincar6 allows us to calculate

0 = KF*w explicitly.

Definition 2.5.3. A differential form w E Qv(M) is closed if dw = 0

and is exact if there exists a differential from CU E S2P- 1 (M) with W = d(D.

In this terminology the lemma of Poincar6 simply states that every closed

differential form is locally exact. In general, this is not true globally.

Corollary 2.5.3 below is a global version of the lemma of Poincar6.

Definition 2.5.4. Let M, N be manifolds and f,
f : M --4 N be smooth

maps. f, f are homotopic if there is a differentiable map F: [0, 11 x M --4

N such that F(O, x) = f(x) and F(1, x) = f(x) for all x E M. The map

F is called an homotopy.
A connected manifold M is called contractible if the maps id: M

M, x  --> x and the constant map c.,(): M --> M, x  --> xo are homotopic.

If x0, x, are in M and -y: [0, 1] i--> M is a curve from x0 to x, then

F(t, x) = 7(t) is homotopy between the two constant maps cx,, and c,,, .

Hence the following lemma implies that contractibility does not depend

on the choice of x0.

Lemma 2.5.5. Homotopy is an equivalence relation which we denote by

Proof The relation f  -- f is clear since we can choose F(t, x) x for all t.

If f - g and F is a homotopy between f and g then P(t, x) : F (I - t, x)
is a homotopy between g and f whence g -- f. Assume that f -- g and

g  -- h and let F, (respectively, P) be homotopies between f and g

(respectively, g and h). Let 0: [0, 1/2] ---> [0, 1] be a smooth map which

satisfies

W 0(0) = 01

(ii) 0(1/2) = 1,

(iii)
d 5(1/2)

= 0 for all k > I
dF-

and 0(t) = I - 0(1 - t). Then the map

A

,
f F(O(t), x) if t E [0, 1/2)

[0, 1] M, (t, X)
I P(O(t), x) if t E [1/2, 1]

is a homotopy between f and h, I
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Lemma 2.5.6. Let f, f: M -4 N be smooth homotopic maps and w E

QP(N) be a closed differential form of degree p > 1. Then f*w - I*w is

exact.

Proof.
Let F be a homotopy between f and f and K: f2P+’(M)

S?P(M) be the operator defined in Lemma 2.5.4. Then we have

dKF*w = dKF*w + KdF*w = (i’)*F*w - (i’)*F*w = f*w - f*w.

Corollary 2.5.3. Let M be a contractible manifold, p  ! 1, and w c-

S?P(M) be a closed differential form. Then w is exact.

Proof. Let cx,,: M -- M the constant map x  -4 xo. The differential form

id*w - (cx,,)*w is exact by Lemma 2.5.6 and the assertion follows from

id*w = w, (cx.)*w = 0. 1

2.5.2 The theorem of Frobenius

The guiding idea in analysis is that it is much simpler to work with a

linearisation of a function than with the function itself. Analogously, it

is often much simpler to specify properties of the tangent bundle of a

manifold than to describe the manifold itself. We are therefore interested

in the following problem.

Let E be a vector subbundle of TM. What are the necessary and

sufficient conditions for the (local) existence of a submanifold

N c M with TN = EN?

If N is a submanifold of M then TN is a subbundle of TM which has

the property that for any two sections U, V of TN (i.e. any two vector

fields along N which are at each point tangent) the commutator [U, V] is

again a section of N. This follows since N is a manifold in its own right.
On the other hand, not every subbundle E of TM has this property, for

instance, take M = R3 and E = fa(z,9,, +,9,,) + b(9, : a, b E R1. For

this vector bundle we have [z,9,, +,9y, a,] = -i%  E(,,,y,z). Hence there

cannot exist a submanifold N of M with TN = EN. This motivates the

following definition.

Definition 2.5.5. A vector subbundle E of TM is called integrable if

for any two sections U, V of E the Lie derivative [U, V] is also a section

of E.

An integral manifold of E is a submanifold N of M with TN c E.

An integral manifold N is called maximal if TxN = Ex for all x E N.
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The theorem of Frobenius (cf. Theorem 2.5.3 below) asserts that inte-

grability is also sufficient for the local existence integral manifolds. This

justifies the terminology. In order to verify integrability it is sufficient to

consider a single frame for E, i-e, k linearly independent locally defined

vector fields V1, . . . , Vk which at each point x span E,,.

Lemma 2.5.7. A k-vector subbundle E ofTM is integrable if and only
if there exists a local frame f V1, . . . , Vk I of E such that for all i, j the

commutator [Vi, Vj] is a section of E.

Proof It is clear that the condition is necessary. Let U, V be any sections

of E. Then there are functions a’, 0’ with U = Eik=1 a’Vi and V

Eki=1 0% and

[U, V] = (U V Vi + a’0i [Vi, Vj ] C- E.

Theorem 2.5.3 (Theorem of Frobenius, contravariant form).
Let E be a smooth subbundle of TM. Then through every x E M there

is a locally unique maximal integral manifold N,, of M if and only if E
is integrable. Moreover, Nx depends smoothly on x.

The basic idea of proof is as follows. Let V,.... Vk be a frame of E and

N’ be the submanifold swept out by the integral curve of V, through
x. At each y G N’ we can consider the integral curve of V2 through y.

All these integral curves together form a set subset N2 of M. Now for

any z E N2 we take the integral curve of V3 through z. These integral
curves form a subset N3 of M and so on. One then has to check that

Nk really is a submanifold. This is not entirely straightforward because

in general, the intermediate sets N2, .. .’
Nk-’ are not submanifolds. It

can be shown, however, that the subsets N2’.
..’

Nk, are submanifolds

of M if the frame I V1, . . . ,
Vk I is carefully chosen.

We will prove the theorem for an equivalent covariant form (cf. The-

orem 2.5.4 below) using an analogous strategy.
A k-dimensional vector subbundle ofM can be described as the inter-

sectionn,i-k kern(w), where w’ are some suitably chosen, at each point
linearly independent 1-forms. In fact, let fVn-k i .... V,,J be a frame for

E and fV1, ... ) Vn- k I be a completion to a frame of TM. If fw 1 n

is the dual basis, then E= n
n-k

kern(w’).i=1

Definition 2.5.6. A collection of finitely many pointwise linearly inde-

pendent 1-forms 1wil is called a Pfaffian system. The Pfaffian system is

integrable if the vector subbundle E= ni=1 kern(w’) is integrable.
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If a 1-form wi vanishes on a submanifold N, i.e., wi (v) = 0 for all v E TN,
then dw, being intrinsic to N, should also vanish: dw(u, v) = 0 for all

u, v E T,N. This is equivalent to (dw’ A w
1
A ... A wn-k) = 0 which is

X

the same integrability condition as before:

Lemma 2.5.8. Let wn-k be 1-forms which are linearly indepen-
dent at each point. Then the vector subbundle E := n

n-k
kern(w ) is

integrable if and only if dw’Aw’A ... Awn-k
i=1

= 0 for all i E n- kj.

Proof. We extend fw 1, wn-k I to a coframe wnj of T*M and

let fVl,..., Vnj be the dual basis. E is then spanned by jVn-k+l Vnl-
We calculate

dw’(Vki V1) = Vk 0 WiMl) - V1 0 Wi(Vk) - Wi([Vk, V11) = -Wi([Vk, V11)-

It follows immediately that dw’(Vk, Vj) (i E 11, - - -,
n - kj) vanishes for

all Vk, V1 E E if and only if [Vk, Vjj E E for all Vk, V1 E E.

Theorem 2.5.4 (Theorem of R-obenius, covariant form).
Let wl,... ,

wn-k be a Pfaffian system which satisfies dw’ A wl A ... A

n-k 1
w = 0 for all i E 11, n - k1. Then there exist coordinates (x

Xn ) and functions wiwith
a

W" = W (xi Xn)dxj (j=1,...’n-k).
3

ThemanifoldN=fyEM:xj(y)=xj(X)VjEfl,...,n-kllisamax-
imal integral manifold of E n

n-k
kern(w’). In particular, Theorems

2.5.3 and 2.5.4 are equivalent.

Proof of Theorem 2.5.4. As outlined above, we will prove the theorem

by induction over k.

:== nn-1Let k = 1. Then E
j=1 kern(w’) is a one dimensional vec-

tor subbundle spanned by a single, non-vanishing vector field V. By
Theorem 2.4.3 there exist coordinates (xl,... I Xn) such that V =

Since w’(V) 0 (i = 1, . . . ,
n - 1), there must exist functions wj’ with

wi = En-1 W (X11... Xn)dxj.
j=1 3

We assume now that the theorem has been proven for k == 1,

Let f be any function such that df,
w 1, . . . ,

wn
- k

are linearly indepen-
dent. Clearly, this system of differential forms satisfies the integrability
conditions

ddf A df Awl A ... A wn-k = 0,

dw’ A df A w’ A ... A wn-k = 0.

By our induction assumption there exist coordinates (’: 1...... ,n) with
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(2-5.3)df fi(: )d; ’ + + fn-(k

We will now show that there is a Pfafflan system 101, Q’-kl which

defines the same vector bundle as the original Pfaffian system but does

not depend on: n-k+2 ......
rn

. Equation (2.5-3)implies that f must be a

function of &n-( -i) only. We can therefore substitute one of the

coordinate functions by f , say f = &n- (k - 1). At each x E M the two sets

of I-forms J&P, - - -,
dp-k, dfI and  df, n-kl are each point-

wise linearly independent and span at each x EE M the same subspace of

T*M. Hence there are functions M with w = Mdx" +h" df ,
where

j 3 n-(k-1)

(h3%J=i_.,n-k is an invertible matrix at each point. This implies that

there are functions h’ such that the differential forms Qi = d&i + hi (&)df

span the same space as fwl, Wn-kj. Since the vector bundle E

n-i-k kern(wi) = nn-k
=1 j=1 kern([?) is integrable we obtain from Lemma

2.5.8

0 = dQ’A Q1 A ... A Qn-k

= dh’A df A S?1 A ... A Qn-k

= dh’A df Ad&’ A ... A d:p-k

It follows that the functions h’ (and therefore also the I-forms Q ) de-

pend only on &n-k+i (where we have used f =&n-k+i).
Since the 1-forms Qn-k do not depend -on :p-k+2,

... 7
&n

the Pfaffian system On-kj can also be considered as a Pfaffian

system of the space Mn-k+l parameterised by : ’ ......
p-(k-i)

-
These

forms define a I-vector subbundle of TM’- +I. At the beginning of

the proof we have already established the assertion in this case, hence

there are new coordinates (x1,...,Xn-k+i) of Mn-k+l and functions S?jl

such that Qi I:n-k S?, (x)dxj. These equalities also hold for the I-
j=1

forms 0’ considered on M since they only depend on &I
......

 n-(k-i).
The assertion follows now from the fact that the 1-forms w’ are linear

combinations of the 1-forms Qi.

2.5.3 Orientable real manifolds

This section is a prerequisitive for the following section on integration.

We were led to the definition of a manifold by the localisation of the

global concept of a vector space and have seen that a manifold can be
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thought of as a collection of local R’s which have been patched together.
The example of a sphere shows that, globally, a manifold may be very

different from R’. In this section we give a (very primitive) global classi-

fication of manifolds by dividing the collection of all manifolds into two

classes. More sophisticated global classifications can be found in books

on differential topology such as (Guillemin and Pollack 1974) or (Bott
and ’Ri 1982).

Definition 2.5.7. A real manifold M is orientable if there exists a

nowhere vanishing n-form v on M. An orientation of M is the choice

of one of the two equivalence classes ffv : f E C’(M,R+ \ fOj)j,
f -fv : f E C’(M, R+ \ 101) 1. An oriented manifold is an orientable

manifold together with an orientation.

Proposition 2.5.2. A real manifold M is orientable if and only if it

has an atlas f (Uk , Wk) IkEN such that for all a, b E N and all x E Ua n Ub
the differential D (Wa 0 (Wb)-I)x : RI ---+ RI has positive determinant.

Proof. "= ": Assume that v is a nowhere vanishing n-form and let

f (Vi 7 Oj) IjEN

be a countable atlas. In order to simplify notation we renumber these

charts such that for each k > 2 there is a j < k with Vj n Vk =A 0.
We set (Ul, Wj) = (Vi, 01) thereby trivially defining an atlas for V1

which satisfies the positive determinant condition This atlas can be ex-

tended by an induction argument. Assume that we have defined an atlas

f (Ul  (PI) A 7 Wk) I

for the set V1 U ... U Vk which satisfies the positive determinant condition

and let j E kj be an index with Vk+j n Vj =h 0.
There is a nowhere vanishing function fj: W(Uj) -- R with (Wj).v

fjdxl A ... A dxn and a nowhere vanishing function fk+j: W(Vk+l) -- R

satisfying (Ok+l)*l/ =:: fk+ldx’ A ... A dxn. Since neither fj nor fk+l
vanish on wj(Uj) n’Ok+l(Vk+l), we have either fj - fk+,(y) > 0 or fj
fk+,(y) < 0 for all y G  pj(Uj) n Ok+I(Vk+l). In the first case we set

(Uk+1 7 (Pk+l) = (Vk+l; Ok+l) and fk+l = fk+l

whereas in in the second case we set

(Uk+li  Ok+l) = (Vk+l 7 X1-2 0 V)k+l) and fk+l = -fk+l 

where Xl-->2 is the reflection defined by

1 2 3
XI-2(Y ,Y ,Y Yn) = (Y2’ Y1, Y3’...’ Yn).
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In either case we have then (Wk+l)*I’ = fk+ldx’A ... Adx"’ and fj-fk+l >

0. This implies

det(D (Wj o (Wk+l)-’) dx1A ... A dx"

0 (Wk+l)-l)* dx1 A ... A dx"

fj dx1 A ... A dXn
fk+1 0 (CPj 0 (Wk+l)-’)

and therefore det(D (Wj 0 (Wk+l)-l) > 0 in either case. We still have

to show that det(D (Wi o (Wk+l)-l) > 0 for any i E kj with

UinUk+l  4 0. For 1 (=- f1,...’k+lj let fj be defined by (Wl)*v =

fldx’ A ... A dXn (1 E fp, qj). Since all fj (1 E  1, - - -, kj have the same

sign and also fk+l and fj have the same sign it follows that sign(fi)
sign(fj) = sign(fk+,). Hence det(D (Wi 0 (Wk+l)-l) > 0

Let jgk: M [0) 1] JkEN be a partition of unity subordinate

to fUkjkEN and let

n

V T_gk(Wk)*(dxl ... dXn).
k=1

This is a smooth, well defined n-form since at each x only finitely many

gk(x) are non-zero and the support of each A is contained in Uk. Let

x (E Uj and il.... iP all indices with gi., (x)  -4 0. Then

P

( oj) * v., = E gi., (x)D (Wi., o ( oj)
-

1) (x)
dxIA ... A dXn

j=1

does not vanish since all gi., are strictly positive and all

D ( oj,., o ( oj)
-

1)
1 wi, (x)

have the same sign. I

Definition 2.5.8. Let M be an oriented manifold and v E on(M)
be a representative of the orientation. An oriented atlas is an atlas

I Pa i (Pa) JaEA such that for each a E A there exists a strictly positive

function Vaj ...
n: Ua -- R+ with

( Oa)*V :::::: Vaj ...

ndX1
... dx’,

where (xl .... I xn) are the standard coordinates of Rn. A positively ori-

ented chart is a chart which belongs to an oriented atlas.
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Example 2.5. 1 (M&bius band, continued from page 53). The M6bius

band M defined in Example 2.1.2 is not orientable. Using the same

notation as in its definition, the set U, intersects U2 in two subsets’,
VV+ =: 7r-1 ((a, 2a) x (-b, b)) and and W_ == 7r-’((O, a) x (-b, b)). The

map D (WI 0 (W2)
-

1)
.

has positive determinant for all x E W+ and

negative determinant for all x E W_
.
Assume now that M is orientable,

i.e.-, that there is a nowhere vanishing 2-form v on M. Then there are

nowhere vanishing functions

fl, : V1 -4 R, f2: V2 -4 R

with

v fldxl A dX2 and (( P2)-1)* P == f2dxl A dX2.

From ((W2) - 1)
*

V f2dx’ A dX2 = (((Pl 0 ((P2)-l)* (fldx’ A dX2) we

obtain that f2 (x) det (D (W1 0 (W2) 1) h for all x c )IV+ U W_ Since

the determinant det(D (W1 0 ((P2)
- 1) changes sign we get a contradiction.

Thus the M6bius band is not orientable.

It is a simple but good exercise to actually build a M6bius band from

paper and to verify using this model that there are closed curves along
which there does not exist any continuous frame.

2.5.4 Integration on real manifolds

In this section, we restrict to K = R. This is necessary since we

need to employ partitions of unity. See Remark 2.5.2 below for the

integration of complex valued functions.

One usually introduces integration as a method to determine the volume

of an open, bounded region B C Rn- The main idea is as follows. We

divide B into small parallel epipeds Bi. Each Bi carries a number f(Bi)
representing the volume of Bi. Summing up all these numbers gives an

approximation for the volume of B. Clearly, the function f which maps

parallel epipeds into real numbers must satisfy certain properties. The

most obvious property is that if we divide Bi into two disjunct parallel
epipeds Ai, Ci with Bi = Ai U Ci, we have f(Bi) ,:z f(Ai) + ffi),
at least if Bi is sufficiently small. Then, choosing an infinite sequence

fJBi,,,1iE1(a)1a (a E N) ofsuch divisionswe obtain a sequence of numbers

lEiEI(a) f(Bi,a)JaEN which in most cases of interest has a well defined

limit, the volume vol(B) of B. Linear algebra indicates the following
choice for f. Let e,,J the standard basis of R’, 101.... )

0- 1 its

dual basis, and bij,..., bi,, those vectors which span the parallel epiped
Bi. The number f(Bi) = 01 A ... Aon (bi, I,. -

-, bi,,,,) is then the Euclidian

volume of Bi with respect to the standard Euclidean scalar product. This

function clearly satisfies the additivity condition above. If one knows
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how to determine volumes one can also integrate continuous functions

0: B --> R (for instance mass densities) by replacing the differential form

01 A ... A on with the differential form 001 A ... A on.

Let us now turn to manifolds. The main problem here is that we do

not have a linear space in which to embed the cubes. However, by now

we are familiar with the idea of translating concepts to their infinitesi-

mal counterparts. Since the tangent space was introduced as the linear

approximation of the manifold, it is natural to place our parallelepipeds
which use the linear structure of Rn into the tangent spaces rather than

into the manifold itself. In other words, we divide M into small sets Vi

such that each of these sets corresponds to a parallel epiped in T,,.M,
where xi is a point in Vi. We cannot define a canonical volume because

a general manifold does not have a preferred frame IEl, . . . ,
E,, 1. This

indicates that it is ’more natural to integrate n-forms directly than to

define the volume of a set first. We will later recover the volume as a

special case (cf. Definition 4.2.1).
To simplify part of our discussions we will define integration for n-

forms which are not necessarily smooth.

Definition 2.5.9. Let M be a real manifold. We denote by On (M) the

set of all continuous n-forms.

We clearly have f2n(M) c Q (M). Let (U,  o) be a chart and w cz f2cn (M)
be an n-form with compact supp(w) C U. Writing  o = (xl,..., x’) there

is a unique smooth function wi
...n

with w w,
...

ndxl A ... A dxn. We

define

W Wi
...

ndxl A ... /\ dXn U)i
...n

o cp-ldxl ... dXn,

where the last expression is the usual integration in Rn. We still have to

show

(i) that fu
’ O
w does not depend on the chosen chart,

(ii) how to extend this local definition to manifolds which may not be

covered by a single chart,

(iii) how to extend this local definition to n-forms which do not have

compact support.

(i): Let (U, 0) be another chart, denote by (y 1, yn) the corresponding
coordinate functions and set

77 = sign (det(I
axa

1))
ayb

Then we have

W :::= Wi
...

ndxl A ... A dXn = Wi
...n det(f

gxa
1) o Odyl A ... A dyn

ftb
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77wi
...n det(f

qxa

J) o0dy’ A ... A dyn

and therefore

JOM W1
...n oO-1dy’ ... dyn

Wi
...n 0’0-1 det(I

qXa
1)  dy’ ... dyn10

(U) qyb

= 77 Wi
...n -0-1 o ( p o 0)-ldxl ...

dXn

=  7 W1
...n

o  O-ldxl ...
dXn.

Hence the definition is indeed coordinate independent if one fixes an

orientation in advance and restricts to an oriented atlas.

In order to address (ii) and to define integration globally we will

employ a partition of unity.

Definition 2.5.10. Let M be an oriented n-dimensional real manifold
Qn(M) be a n-form with compact support. Thenand w E

C

IM
aEA b(a),IP6(a)

where I (Ub)  Ob) GB is an oriented atlas such that each Ub has compact

closure, fa a partition of unity subordinate to fUbjbEB and b(a) is an

index with SUPP(fa) C Ub(a) -

Since each x E M has a neighbourhood which is intersected by only
finitely many SUPP(fa) and supp(w) is compact the sum in the definition

above is finite.

Let 19c1cEc be another partition of unity subordinate to f(UbIbEB
and 6(c) be an index with supp(g,) C Ub(c). Since all sums involved are

finite we can calculate

  J(U faw 9c fa U)

aEA b(a) Wb(a) aEA cEC

I: E I 9C f" W

aEA cEC (Ub(a) , W b (a) )

E E I 9c fa W

cEC aEA

E gC 1: f.
cEC

f(U6(WP6(c))
aEA
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gr-

CEC

This implies that the definition is independent of the chosen partition of

unity. Since by coordinate invariance it is also independent of the chosen

oriented atlas our definition of integration over n-forms with compact

support is well defined.

(M) does not have com-We will now address point (iii). If w G Qr’

pact support, its integral may not exist. This is completely analogous to

the integration of functions f : R ---> R. For our purposes the following
extension is sufficient.

Definition 2.5.11. Let M be an oriented n-dimensional real manifold
and w E S?n (M). Let A, (Pa) I aEA be an oriented atlas and for each a

C

let w(a) : Ua --+ R be defined by (Wa)*W ": W(a)ndxl A ... A dx’. The
1...n I...

modulus of w is the continuous n-form jwj locally defined by ((Pa)*lwl

p(a)"I... jdx1 A ... A dxn.

Let M be an oriented n-dimensional real manifold and (Ua, W,,)aEN be

a countable oriented atlas such that each Ua has compact closure. As a

preparation to the following definition we first need to give a meaning to

the expression f fulu ... uU,
JWjjkEN for arbitrary w E S?n(M) which do not

C

necessarily have compact support. For each j E f 1, . . . , kj let Ij = 11 E

fj+l,...,kl : UjnUj = _ 01. ifq E Qn(U,U ... UUk) has compact support
G

Ek 1
then we have fu,u ... UUk j= (f(Z i,Wj) f(i jnuwj) if

Qn(M) is a general differential form we defineWE
C

k

jm’wj) J(41
nu,  oj

Jul
U ... UUk j=1 1E j

Definition 2.5.12. Let M be an oriented n-dimensional real manifold

and A, Wa)aEN be a countable oriented atlas such that each Ua has com-

Qn(M) is integrable if the (monotonicallypact closure. The n-form w E
c

increasing) sequence

kW711 jWjjkEN I fa
I U ... UUkU

aEAk Pb(a),Vb(a))

where ffak: U1 U ... U Ukj a partition of unity subordinate to f(UbIbEB
and b(a) is an index with supp(fa) C Ub(a) -

is bounded.

Clearly, any w E Q (M) with compact support is integrable. The defi-

nition is independent of the chosen atlas. To see this let (Vb, V)b)bEN be

a second countable oriented atlas such that each Vb has compact clo-

sure. Then for each k E N there is a j(k) E N such that U, U
... Uk C
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VI U
... Vj(k). Hence fu,u ...UUk

I (A) I < fV, U ... U-I ,(,)
1wJ which implies that

IfUJU ... UUk
JU)JJkEN is bounded if ffv,u

... U-I j IWIIjEM is bounded.

We can now define integration for differential forms which may not

have compact support.

Definition 2.5.13. Let M be an oriented n-dimensional real manifold
and Pa, (Pa)aEN be a countable oriented atlas such that each Ua has com-

pact closure. For any integrable w (E f?n(Rn) we define its integral by

W = limJ
M k 00 fulu

...UU,

This limit is well defined since integrability implies that

I J W - W I : _
"l

IWI < 00

U-UUk
fUIU-UUk+I JUkU"*UUk+l fU

J=k

for k oo and therefore that ffuIU-UUk WJkEN is a Cauchy sequence.

Observe that we can integrate any integrable n-form over any subset

open subset U and any (not necessarily integrable) n-form over any open

subset V with compact closure since these forms are clearly integrable
with respect to the (open) submanifolds U and V.

The following two lemmas are direct consequences of our definitions.

Lemma 2.5.9 (Linearity of integration). Let M be a real manifold
and w, cD on(M) differential forms which are integrable. Then we have

C

for any real numbers a, b

IM (aw + bCD) = a IM w + b IM 0.

Lemma 2.5.10. Let M, N be oriented real manifolds and f : M --> N

be a diffeomorphism such that f,.v is a representative of the orientation

of N for each representative v of the orientation of M. Then we have

for any w E w E Q"(M)
C

fm f*W =: JN W.

Complex valued functions play a very important r6le in functional
analysis and quantum mechanics and vector valued differential forms
are used in both physical and mathematical gauge ’theory. (For in-

stance, the analogue of the electromagnetic field strength is described

by a Lie algebra valued differential form.) Readers interested in in-

tegration over such objects can find some elementary definitions in

the remark below. In this book, however, we will use these concepts
only in order to motivate the definition of mean curvature vector field
(cf. Definition 4.4.2).
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Remark 2.5.2. We have restricted to K = R since partitions of unity do

not exist in general over complex manifolds. It is possible however to inte-

grate complex valued differential forms over a real manifold M. Let M be

a real manifold. A complex valued differential form is a map w: x  ---> Wx

p entries

where w,,: TXM X ... x TM -4 C is multi-linear and anti-symmetric.
Denote by OP(M, C) the space of all complex valued differential form

of degree p. For each w S?P (M, C) there exist two uniquely defined

differential forms Wre,
iin QP(M, R) such that w =

re
+ iWirn. We call

U) C on (M, C) integrable if both Wre and wirn are integrable. The integral
over an integrable complex valued n form w is defined by

fm W = fm re
+ ifm Wiin

We wish to show that integration over complex valued differential forms

is C-linear. Additivity is clear. With w E on(M, C) and a = are + ia"n

C we have

aw =I (are + ia’m) pre + iirn)fm
AM

= fm ((arere - airnwirn) + i(are.irn + a’mwre))

= (are JM re
- ain’ IMA Jm) + i (are fmWim + a"n fm re))

(are + iaiiii) fm pre + i.irn)

= a fm W.

This definition can be further extended to vector spaces. Let K = R

or K = C and 93 be a k-dimensional vector space over K. A vector valued

differential form of degree p is a smooth map w: x  -* w,, where

p entries

,,M x ... x TxM --+ 93u)x: T

is multi-linear and anti-symmetric. Denote by f2P(M, 93) the space of

all vector valued differential form of degree p. If w E S?P(M, 93) and

JUI, - - - ) Uk a fixed basis of 93, there exist k uniquely defined differential

forms w’ G QP(M) with w = I:k w’u, A vector valued differential

form w is called integrable if all w’ are integrable. It is clear that the

definition is independent of the chosen basis. We can now define the

integral of a vector valued differential form w via

W =

k

W-) V,( E
J M

a=1

(IM
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This definition is independent of the chosen basis since for any other

basis 6k with A060 we have w = _Tk= c7),86,3 where CDO
c’

Y:k A)3w’ and therefore

C,)3) 6, A’3w’ bc, = A13 6,
M

a E - (fmJ
,8=1 a=1,0=1

(im
a=1,3=1

k

E
a1pha=1

(JM

We turn now to the theorem of Stokes which generalises the classical

integration formulas of GauB and Stokes which in turn generalise funda-
b

mental theorem of calculus, f’ f’(x)dx = f(b) - f (a).
First we need to define the concept of a manifold with boundary.

Definition 2.5.14. The pair (M,,)M) is an n-dimensional oriented

manifold with boundary if there exists an n-dimensional oriented man-

ifold 1 1 and an embedding t: M --4R such that

(i) the topological boundary &(M) is an (n - l)-dimensional sub-

manifold of 1 1 which is diffeomorphic to aM,

(ii) for each x c &(M) there is a positively oriented chart (U,  p) of
1 1 centered at x with W(U n t(M)) = ly E W(U) : yl < 01.

An oriented manifold with boundary is compact if t(M) U at(M) c

is compact.

We will usually identify M with t(All) and W with&(M).
Let ICI be a manifold and N a hypersurface in 1 1 such that M

M \ N is connected. Then (M, N) is not an oriented manifold with

boundary, even if k is oriented and compact. The following theorem of

Stokes would not hold for (M, N).

Theorem 2.5.5 (Theorem of Stokes). Let (M,W) be an oriented

compact real manifold with boundary and w E on-I(M). Assume that

dw and w are integrable over M and W, respectively. Then Stokes’

formula

Ja
M

W = JM dw

holds.

Proof Let jUj,  ojjjErj be an oriented atlas of 1 1 such that for each j there

are intervals (a , b ).... (a ’, bjn) with Wj (Uj) = (a , b ) x ... x (a’ , b ’).
The definition of a manifold with boundary implies that we can also

assume that for each Uj which intersects OM the equality Wj (Uj n M) =
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ly E W(U) : y’ < 01 holds. Let Jfjjj c N be a partition of unity
subordinate to IUj 7 Wi IjEN

We show first that

d(fjw) fjW (2.5.4)

holds for each j E N. We may write fjw = E’i=, wkdx’ A ... A dx’-’ A

,(-I)’+laiwk ... Adx’.dx’+’A ... Adx’ which implies d(fjw) ’dxA
We set

A

n-1
[aj, bj]’ = (aj’, bjl) x

... (a. , b. ) ... x (aj, bjn) C R

A

where (a3 , b3 ) indicates that the ith interval is omitted. Since w3k has
i

compact support in (aj’, bj’) x ... x (aj, bj) the left hand side of Equation
2.5.4 is given by

d(fjw)

xn_1)i+IC kdx’A ... Ad
9xi

i+ 1 xnk dxl ...
d= f(al,b!)x

... x W", V,
axi

3

= f(a ,bl)x
... x (& ",V")

kdxl
...

dxn
axi

n

+ (-I)i+l WiJ (X1, . . . , b3 ,. ..
Xn

i=2

=0 A

- Wi (XII..., a...... Xn dxl
...

dx’ dXn

=0

i (0, X2,.. Xn) 2. Xn_W
1 2

Xn) )f[a,j,b.jj1 (W1 (aj, x ....
dx

..
d

if Uj intersects 9M,

1,

;’0
.1-7

-

X2. Xn)
1 2 Xn; X2

..
Xnf[ag,bj w3j (bj, -w3,(aj,x )d A

otherwise.

There are three possible cases.
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(i) If M n Uj = 0 then aM n Uj 0 and both integrals vanish.

(ii) If M n Uj  4 0 but OM n Uj = 0 the right hand side vanishes

because we integrate over an empty set. The left hand side vanishes by
our calculation

(iii) Assume that M n Uj : 0 and OM n Uj  = 0. Then

d(fjw) = Wi (0, X2,. .., x’) dX2
...

dxn ,Jmn4j f(.?, b?) x ... x (a!, b ‘).7 .7 .7 .7

= f Wj(o,X2,...,Xn X2
I )d A ... A dxn

,9amnz j

famnz j fj

since the pull back of dx1 to OM vanishes and therefore also the n - 1-

form

W (0, X2 ...,x’)dxl A ... A j  A ... A dxn pulled back to aM(i > 2).

We conclude the proof by summing over all local integrations:

00

dw d(fjw) E d(fjw)fm fm
:,Q

fmnL j
j=1 j=1

00

Y fjW W.

j=1
Jamnul. Ja

M

Corollary 2.5-4. Let M be an n-dimensional, oriented, compact, real

mani Id and w E S?n- I (M). Then fm dw = 0.

Proof. Since M is a manifold without boundary, OM 0 and fm dw

fam W = fo W = 0. 1

As an application of Stokes’ theorem we prove that for every even-

dimensional unit sphere every vector field must have a zero.’ This theo-

rem is also known as the "theorem of the hedgehog" since it shows that

it is impossible to perfectly comb an "ideal" hedgehog.

Lemma 2.5.11. Let M be an n-dimensional, oriented, compact, real

manifold and f, f: M --+ M homotopic maps. Then

ff
m M

for all w E Qn(M).

7 Recall that we only consider smooth vector fields
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Proof. Lemma 2.5.6 implies that there exists a differential form Co E

on- 1 (M) with f*w - f*w = dCv. Hence the assertion follows from Corol-

lary 2.5.4. 1

Theorem 2.5.6. Let Sn be the unit sphere in R’+1 and V be a vector

field on Sn. If n is even then there is a point x0 E Sn with V(xo) = 0.

Proof. If V(x) : 0 for all x (E Sn we can normalise V with respect

to the Euclidean scalar product  -, -)R11+1 of R’+’, i.e., we can assume

without loss of generality that T) V)R11+1 = 1. For each x E S’ we

can identify V(x) with a tangent vector of R’+1 and, since T.,Rn+l
and R1+1 are canonically isomorphic further with a point in R’+’. Our

normalisation implies then that we have defined a map V: S’ ---> S’.

Let 7 be an integral curve of V with -y(O) = x. Then (’Y(t))’YW)R-+1 = 1

implies 0 = I = 2 (X7 V(X))R",+I. Hence V(x) isUt (’Y(t)1’Y(t))R-+1)Jt=o
perpendicular to x and the homotopy

F: [0, 1] x S’ --+ S’

X  _4 cos(7rt)x + sin(7rt)V(X)

is well defined. It satisfies F(O, x) = x and F(1, x) = -x for all x E Sn.

Since -id is homotopic to id and the diffeomorphism -id changes the

orientation of Sn (for n even) Lemma 2.5.11 implies that for every W E

on (sn)

is is" is",
holds. This in turn implies fs,,. w = 0 for all n-forms w which is certainly
not true. Hence our initial assumption V(x) 7 0 for all x E S’ must be

wrong.

2.6 Connections and projective structures

There is one feature of A’ which we have ignored so far in our efforts p. 89 1

to localise spacetime. Given any two different points in An there is a [I p. 125]

unique line passing through them. This global structure has an infinites-

imal counterpart given by the directional derivative of vector fields. In

fact, these lines are exactly those curves -y: [a, b] --> A’ which satisfy

Dff- y) = 0. (Observe that this expression is well defined, i.e. for any

vector field V with V(-y(t)) =  (t) we have DV( ) = 0.)
Recall that in Chap. I we have relied on this affine structure in order

to introduce inertial observers. Here we will introduce a generalisation of
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it to general manifolds. This will be done by generalising the directional

derivative D.

In the affine space An the difference of a derivative of a map 0: An

A’ and a vector field V: An --> K’ is blurred. In fact, let e 1, - en

be the standard basis of Kn. Since

- the derivative of 0 in direction w at x is given by x + 2-24wie. and

- the derivative of V in direction w at x is given by av" wi eiaxi

it is difficult to see the difference between both kinds of derivatives.

Accordingly, they are commonly both denoted by D. Consider now a

map 0: M --> M and a vector field U on M. The derivative of 0 at x in

direction wx is now given by Txo(w.,) E To(x)M whereas the analogous
derivative of V is given by TxV(wx) E Tv(x)TM. We do not obtain a

vector but an element in the tangent bundle of the tangent bundle. It

follows that this derivative cannot be used for defining straight lines.

In order to obtain an analogue of the directional derivative with val-

ues in TM we will need an additional structure, a connection. The follow-

ing definition is an expression of the idea that infinitesimally a connection

17 should be the same as the usual derivative D.

Definition 2.6.1. A covariant derivative or connection V is a map

V: Tol(M) -4 711(M), V --+ VV, VV(W) :--: VWV ’--: VaVbWaOXb

such that for all vector fields U, V, W, all functions f, h, and all a, 0 E R

the following holds.

(i) ’7fV + hWU = fVVU + h’7WU,
(ii) VW(au + OV) = aVWU + 017WV,
NO 17wfU = (W - f) U + fVWU.

The torsion of V is the tensor field

(U, V)  --> Tor(U, V) = VUV - VVU - [U, V].

A covariant derivative 17 is called torsion-free if in addition to (i)-(iii)
the equation

(iv) Tor = 0.

holds.

This definition is justified by the following theorem.

Theorem 2.6.1. A map V: Tol(M) - T11(M) is a torsion-free covari-

ant derivative if and only if for each x E M there exist coordinates

(xO I . . .

,
xn- 1) centered at x such that
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,9Va

) Va
’9Xb

Ix

= (7b (2.6.5)(
holds at x for all vector fields V.

Proof. Assume first that there exist coordinates such that the Equation
2.6.5 is satisfied. Then it is clear that properties (i)-(iv) of a torsion-free

covariant derivative are satisfied.

Let V be a covariant derivative and (U,  3) be two charts

centered at x. We denote the coordinates with respect to these two charts

by x (y) = W (y), -P(y) =  3’(y). Observe that (D(W 0  ,-1))a = ax’ and
b ayr

1))a(D( o o W- b igXb

Setting V,9X.19Xb F’b,9x. and V,9 19: b we have
5  

,VWV = Wa,9X", Vc,9X; + lacblqX ,WaVbgX

= fVa a f’C 19X,:: + f;,cb,9, ,::fVafrbaxc,
a

where Va -9.:i’Vb, fVa = -95c’Wb and ’ Xb ab. Hence we obtain
.97 a

C

(VWV) fVaa frc + PcbWaVb:i", ’a

a,,ta
Wd

aXe 0_ _c
_Vfa " (

a. a a, b
c Wd Vf+ P

x

axd 9., a axf ab axd 9xf

a;,-a CqXe a;,c
Wdax Vf +

a, ,a CqXe a2;i c
_ WdVf

,oxd 9;-,a 5X7 XdXd a.: a aXfaXe 

&,-a aj b
 .c WdVf

-
+ ba Xd Xf

, ’c

Vf + (
a2,, c a.:; a 19: b

Pa
af

Wda c WdVfXd, d
+ cb)d9xf 9Xf,9X 9Xf19x

a: c
WdaxdVe +

aXe

(
92j h a;,-a aj b

fah- b) WdVfId
+

daXe a., h XfgX gXf5 9x

(_)c a., , (,VWV)e = 2LWd Ve + reFrom VWV aXd yWdVf we getax, ax, d

therefore

(9Xe 92,: h 9Xe 9. a 9., b
,h

Fdef
9j h -jX-f ,_9Xd +_;X  h_  -Xd 5Xf

Now we can show that a covariant derivative is torsion-free if and only
if there exist coordinates such that the equation in the theorem holds.

Expressing the condition of being torsion-free in coordinates we see that

it is equivalent to Fab = Fbca in any coordinate system (xo.... I
Xn-1

If the covariant derivative is induced by coordinates in which the Facb
vanish at x, then in any other any coordinate system (xo.... I Xn-1) we

have re aX. a2: l
f ’T which is clearly symmetric in e and f. For the
d _5  r D_X_-Tax
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converse, assume that the Facb are symmetric in a, b and (without loss of

generality) that z-a(x) = 0. We will now consider a quadratic coordinate

transformation of the form :F =: xa + .1Aa XbXc, where A’ is symmetric2 bc bc
in b and c. At.;p = 0 we have then

a,, a aXa 2;,-c
= ja ja

5-Xb b i
Ac

5X  _b
=

b 19Xa,9Xb
-

ab,

whence Facb = Pacb + Aacb at JF = 0. Our assertion follows by choosing
Aac Iab

= - (Pacb)
Ix

For later reference we collect the coordinate expressions derived in the

proof of Theorem 2.6.1 in the following corollary.

Corollary 2.6. 1. Let (xo, . . . I Xn-’) be a local coordinate system on a

manifold with connection (M, V). Then there exist functions FbI, ra
(bc)

such that for each vector field V the covariant derivative VV is given by

Va == 9 Va + _paVb b buc

and the function Fbac transform under a coordinate transformation

(x0 xn-1)  _4 (: o ....... n-l)

according to

a
aj a 92Xh 19. a 19Xd 19Xeh

r

C Freh d
A

19X  7Xbqj c
+

 7Xh  Yb_ a. c

Lemma 2.6.1. Let (M, V) be a manifold with connection. There exists

a unique extension of V to general tensor fields,

V: Tr(M) - T’r+ , (M), 0 - VV)

such that VV: T,,r(M) -- Tr(M) is a derivation for every tensor field
V.

Proof. It is clear that we can extend VV to tensor fields as a derivation.

Uniqueness follows directly from Proposition 2.4.2. 1

In special relativity, timelike straight lines represent freely falling parti-
cles and lightlike straight lines represent light signals. In Euclidean space,

straight lines are the shortest curves between any two points. One way
to define a straight line -y: (a, b) F--> A’ is to require that the accelera-

tion  = Dffy) vanishes. This definition carries over to manifolds with

connections as follows.

Let t 1--4 V(t) be a vector field along a curve t 1-4 -y(t). Then we can

extend V to a vector field ’ which is defined in a neighbourhood of the

path of -y. It follows from Corollary 2.6.1 that the covariant derivative of

’1 restricted to -y in direction  is independent of the extension ’ . Hence
the following definition makes sense.
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Definition 2.6.2. Let V be a covariant derivative, t  -4 -y(t) a curve,

and t  --> V(t) a vector field along -y.

(i) Then 1 (t) = V (t)V(t) = (AVa(t) +.pbayc(t) b(t)) 9a is the
dt

covariant derivative of V along -y.

(ii) A pregeodesic is a curve -y satisfying V  
(iii) A pregeodesic -y is a geodesic if V  = 0.

(iv) A geodesic is complete if it is defined for all t G K.

(v) A projective structure is a maximal equivalence class of connec-

tions which all have the same pregeodesics.

The notation V (t)V(t) can be justified as follows. Let W be any vector

field with W(-y(t)) = V(t). Then we have

,_ bWc)Oa) 0+
C -Y(V (t)W) 0 Y (( babWa rba

d
(W 0,Y)a + Fba_ bWc 0 ’Y) 19a

dt

d
Va ra

dt
+ bWVc)Oa-

Hence the notation comes from identifying V and W which are different [p. 1211]

maps but assign to each point -y(t) the same vector. I p. 132

We will now introduce the notion of parallel transport. The follow-

ing motivation may seem to be mathematically imprecise. Nevertheless,
mathematicians used such arguments (before the advent of the French

Bourbaki school which introduced a new level of precision in mathemat-

ics) in order to introduce connections. These arguments capture very well

some of the intuition which leads to the notion of a covariant derivative

and are therefore worth knowing, even though they have to be taken

with a grain of salt: One may view a covariant derivative as a connec-

tion between infinitesimally neighbouring tangent spaces. Let V be a

vector field, x E M and  E TxM. The idea that T,,M is the infinitesi-

mal approximation of the manifold M near x is sometimes expressed by
stating that x +  is a point infinitesimally close to x. (Strictly speaking,
this "addition" of points and vectors in general manifolds does not make

sense. Assume that M is a submanifold of Kn+k
.
Then we can identify

T,M with a linear subspace of Kk+m and x +  does make sense. This

point will in general not lie on M but still be close to M if  is small.) Let

v,, E TxM which we want to "parallelly" translate to the point x +  .
We will then have vx+C = v., + Jv where Jv is small. Since this is an

infinitesimal process Jv should depend linearly on v and the difference

vector  . This bilinear map connects the tangent spaces of our infinitesi-
amally neighbouring points. In coordinates, we have jva = 17 nbcVb c. Co _

sider now a curve -y between two distant points x, y E M. We can divide

the curve into infinitesimal segments and parallelly translate a vector
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vx E TXM successively along these infinitesimal curve segments. The

concatenation of these infinitesimal parallel translations gives a linear

map P
ly

: TxM -+ TyM which in general will depend on the interme-

diate tangent spaces and therefore on the curve -y. These ideas will be

made precise in Definition 2.6.3 and Proposition 2.6.1 below.

Definition 2.6.3. Let (M, 17) be a manifold with connection and

-/: (a, b) -+ M

be a curve. A vector field V along -y is called parallelly transported

along -/ if 17 V(t) = 0 for all t E (a, b). A parallelly transported vector

field is often simply called parallel.’

In particular, a geodesic is a curve whose tangent vector is parallelly
transported. For this reason, geodesics are sometimes called auto-Parallel
curves.

Proposition 2.6. 1. Let (M, V) be a manifold with connection and let

-y: [a, b] --+ M be a curve which can be smoothly extended into both di-

rections. The map

P^y: T-Y(a)M -4 T-y(b)M7 v  -4 V(b),

where V: [a, b] --* TM is the unique parallel vector field along -Y with

V(a) = v, is a linear isomorphism.

Proof. Since -y([a, b]) is compact, there exist finitely many charts which

cover the curve -y. Without loss of generality we can assume that -Y

is contained in a single chart. (Otherwise we could divide -Y in seg-

ments which are contained in single charts. A successive application
of the proposition to these segments would imply the proposition in

the general case.) The equation 17 V(t) = 0 Vt G (a, b) reduces to

a system of first order differential equations for the coefficients Va(t):
1 a + rba. bV,C

0. It follows from the fundamental theorem for ordinary
differential equations (cf. Theorem 2.4.1) that the map P

ly
is well de-

fined. Letting  (t)  -4 -y (a + b - t) and f/ (t) = V(a + b - t) we clearly have

(P
- ,

17,:YV(t) = 0 if and only if 17 V(t) = 0. This implies that P 
and a fortiori that P

^/
is an isomorphism. I

It is possible to recover the covariant derivative from parallel transport.
The relation between these concepts is similar to the relation between

the Lie-derivative and the Lie-transport. But note that there is no Lie-

transport along a single curve.
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Proposition 2.6.2. Let (M, 17) be a manifold with connection and let

-y: [a, b] - M be a curve which can be smoothly extended into both di-

rections. For each s E [0, b - t) let  t,,: [0, s] -- M, a  -4 -y(t + s - a).
Then for any vector field V(t) along -y we have

V (t)V(t) lim (P t, (V(t + s)) - V(t)) .

S-0 8

Proof. Let W(a) = P t (V(t + s)). Then 17- W = 0 implies -!LWa
1419 da

FbacWb d
( t,,)c. Using a Taylor expansion it is easy to see that there

t au

exists a smooth vector field U along  t,, with

a Wb(0)
d

2.W07) = W(O) - o’Fb(c ((au  t") lc=O)
C

aa + U(9)9

Setting a = s we obtain from W(0) = V(t + s) and (jd-, t,,)1,=0 = - (t)do,

the equation

cVb(t) c(t)ap t’sV(t + 8) _ V(t) = V(t + 8) _ V(t) + Srba U( )82a
8

which implies the assertion.

Corollary 2.6.2. A connection is uniquely determined by its parallel

transport.

Since inertial observers played an important r6le in Chap. 1, a thorough

understanding of geodesics and projective classes should be important for

the globalisation of the results in Chap. I (cf. Chap. 3). But they are also

of independent geometric interest. In fact, the classical development of

Euclidean geometry is built on the concept of straight lines (and therefore

on the concept of projective classes).
Theorem 2.6.1 implies that torsion-free connections are a straightfor-

ward globalisation of the usual derivative of vector fields in vector spaces.

Proposition 2.6.3 shows that also from the viewpoint of geodesics it is

sufficient to consider only torsion-free connections. p. 159 1

Lemma 2.6.2. Let V, t be connections on a manifold M. Then their
[I p. 129]

difference V - t is a tensor field.

Proof. We have to show that (U, V) , S(U, V) = VUV -  7_UV is

function-linear. The only non-trivial part of this assertion follows from

S(U, fV) = VuyV) -  -7uyV)
= (U 0 f)V + fVUV - (U - f)V - ftiuv
= fVUV - ft uv ::-- fS(U, V).
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Proposition 2.6.3. Let t be a connection. Then there exists a unique

torsion-free connection 17 which has the same geodesics as

Proo
.
We define 17VW = t VW -

1 Tor(V, W), where Tor(V, W)f
2

VVW - VWV - [V, W] is the torsion tensor of V. Since Tor(W, W)
0 for all W, both connections have the same geodesics. Further, V is

torsion-free by construction. For uniqueness note that if we add any

additional, non-vanishing, in the covariant entries skew symmetric tensor

field S (E T21 (M) to V we loose the property Tor = 0. On the other

hand, for any non-vanishing, in the covariant entries symmetric tensor

field S E T21 (M) there exists a vector v., with S(v.,, v,,) :h 0. This implies
that the geodesics with respect to the connections 17 and V + S which

have initial velocity v., do not coincide. I

However, there exists infinitely many torsion-free connections with the

same pregeodesics. This means that each projective class contains in-

finitely many torsion-free connections.

Lemma 2.6.3. Let V and 17 be torsion-free connections and 93 be the

projective structure generated by V. Then 7 cz T if and only if there

exists a one-form 0 such that t - V = 0 (& id + id & 0 (or, in coordinates,

1’6’r - F1 . 2ja 0C) ).be (b

Proof. Let Zbac = Pba,. - 1-b‘e. Then their pregeodesics can coincide o ly ifn

Za VbVc 11 va for all vectors v’. This implies _Ta Vbv’Vd - _Td VbVcVa = 0be be be

for all vectors v which is equivalent to 6e Zbae - 6a Zbee(d (d
0. Since Z is

symmetric in the lower indices b, c we get

ea
:= 6e _Ta ja ZeS

C,d (d be)b (d be)

=

1

( (je_ra _ 6a_re ) + (6e_ra _ 6a (6eZa _ ja_Te )
3

b cd b cd c db c
 -deb) + d be d be ) -

Sbca a a

ac
b

I

- ja-ig the indices e and b gives rd c Zd0b +Contractil
d
= nZ ’Ec’b Cd  d +

Za - 6a_Tb = (n + 1)_ra - 26a Od) ,
where Od (n + 1)’-IZb .

It follows
dc d be ed (C bd

that Za . 26a Od)cd (C

For the converse notice that VVV = VVV + O(V)V, whence both

connections have the same pregeodesics.

The following corollary will be used in Sect. 3.2

Corollary 2.6.3. Let (M, V) be a manifold with connection. Let be

a connection such that for every x (E M there is an open set it , C "
M

such that the pregeodesics with initial velocity v., (E itx with respect to V

and t coincide. Then V and t generate the same projective structure
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Proof. We use the same notation as in the proof of Lemma 2.6.3. It is

sufficient to note that Z, VbV,Vd Zd VbVeVa
be be

0 for all vectors v E i1x
(Ia

- 6a Zealready implies 6(,dZbc) (d be)
0.

[p. 127 1]

I p. 159

Written down in coordinates, the geodesic equation  a + Fba 0c b c
reduces to a system of second order differential equations on M. Alter-

natively, it can be considered as a system of first order equations on the

tangent bundle TM. In coordinates, this system of differential equations
is given by

d
a
= Va,

d
Va = _Fa_1Y ,

-

VC.bcVb
dt dt

The corresponding vector field on TM is called the geodesic spray F E

701(TM), and can be invariantly defined by

r(V.) TO ’. (at)

where -y,.,,. is the unique maximal geodesic with 7,.,, (0) = x and (0)
v,,. The following proposition justifies the definition.

Proposition 2.6.4. Let (M, V) be a manifold with connection and V

be the geodesic spray. If A: (a, b) -- TM is an integral curve of V, then

7rTM o A is a geodesic. Conversely, for every geodesic -y there exists a

unique integral curve A of r with ?rTM o A = y.

Proof Let vx E TxM and -yv,, be a geodesic with  (to) = vx. This geodesic
defines a curve Avx (t)  v. (t) in TM. Clearly, 7rTM o Avx = -yvx and

 V t
11_ (-Yvx

d
Av, (t) = T t :(a) = T -tAvx (,9t) T I o -rt) (at), where Tt is the0 dt

translation s  -4 t + s. Since A(-yv,,, oTt)(0) is the velocity vector of -Yv.dt

at t, Avx is an integral curve of _V.

Conversely, let A be an integral curve of r and consider the geodesic

7,\(t,,) with (to) = A(to). By the construction above,  ,\(t(’) is an

integral curve of V. Since its initial point in TM is A(to), it must coin-

cide with A(to) by the uniqueness part of the fundamental theorem for

ordinary differential equations (Theorem 2.4.1). 1

We have seen that a manifold is locally isomorphic to A’ (considered as a

set with differentiable structure). It is not true, however, that a manifold

with connection is isomorphic to A’ with its affine structure. In fact, for

a manifold with connection there do not generally exist charts which

map geodesics into straight lines. For this to be the case a necessary

condition would be that the connection is in the same projective class

as the canonical connection of A’. We will now show that one can still

identify the geodesics which pass through a given point with all straight
lines in A’ which, pass through a given intersection point (cf. Lemma

2.6.4).



130 2. Analysis on manifolds

As a consequence of Proposition 2.6.4 and the fundamental theorem

for ordinary differential equations, each x E M has a neighbourhood
W of 0 in TxM and there is a J > 0 such that for all v c )/V the

geodesic 7v: (-J, J) - M with  (O) = v is defined. By choosing W
small enough we can normalise the interval [-J, J]. In fact, observe that

 ,,v (t) = a , (at) for any a E K. Hence for every x E M the zero vector

0 E TxM has a neighbourhood U C TxM such that for all v E U the

geodesics t 1-4 -yv(t) with initial velocity v is defined on the interval

[-1, 1].

Definition 2.6.4. Let (M, V) be a manifold with connection. The map

exp: jv E TM: -y,(1) is definedf --+ M

v 1-4 exp(v) := expx(v) := -yv(l),

where X = 7rTM (V) ,
is called the exponential map of V.

It follows from the fundamental theorem for ordinary differential equa-

tions that the set of all v E TM, for which the integral curve A of F

with A(O) = v is defined up to (including) parameter value 1, is open.

Hence the domain of exp is open in TM. This also implies that for any

x the intersection of this domain with T,,M is open in TxM. This set is

also star-shaped as a consequence of the equation  ,,v(t) a ,(at) for

all a E R.

Proposition 2.6.5. For each point x E M there exists a neighbour-
hood U of 0 E TM such that expx is a diffeomorphism from U onto a

neighbourhood U of x E M.

Proof. Let V E TxM and f) (tv)) It=0
E ToTxM. Then

dt

T expx (f))
d

expx (tv)
d

-YtV (1)
d

-Y’M
dt )

It=0
dt )

It=0
dt )

lt=O

V

which implies that T exp,, is an isomorphism. Now the assertion follows

from the inverse function theorem.

Corollary 2.6.4. There is a neighbourhood U of Ox E TM such that

Exp: 1 -- M x M, vy F---> (y, exp(vy))

is a diffeomorphism onto its image

Proof. The corollary follows from the fact that TExp = T7rTM T T exp

is non-singular whenever T exp is non-singular. I
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Proposition 2.6.5 provides especially practical coordinates. Let lei,
M.e,,J be a basis of T i,,M and write v,, = v ei for each vector v,, c

Then f3,(O.,) = Jv,, : V"E7,’1(va)2 < rJ is a neighbourhood of 0,, c

T,M. The map exp.,: &(0) --> B,(x) := exp(f3,(Ox)) is a diffeomor-

phism for any sufficiently small r > 0. Hence we can define a coordinate

system by xa(y) := (expx-1 (y)) a. These coordinates are called normal

coordinates and the corresponding chart is called a normal chart.

Lemma 2.6.4. Let (M, 17) be a manifold with connection, x E M, and

(U,  p) be a normal coordinate chart centered at x. Then W maps the

geodesics through x onto the straight lines through 0 E K’.

Furthermore, the Christoffel symbols with respect to the chart (U,
satisfy _ra

c) (X)
= 0.

(b

Proof. The first assertion follows immediately from the construction of

normal coordinates.

bc
vc van-To prove the second assertion we must only show that ra vb

ishes for all vectors v E TxM. Let y be the geodesic through x with

 (O) = v. Since its coordinate expression is a straight line the coordinate

components satisfy  a = 0 and therefore 0 =  a (t) +rba
b (t) C (t)

C

rba At t = 0 this equation reduces to rba,(x)vbvC 0.c(,y(t)) b(t) c(t)

In Euclidean space, a convex U set is characterised by the requirement

that any two points x, y E U can be joined by a straight line which is

contained in U. For a manifold with connection we call a set U convex

if any two points x, y E U can be joined by a unique geodesic which is

contained in U. We will now show that each point has a convex neigh-
bourhood.

Theorem 2.6.2. For each x E M there is a sequence of convex neigh-
bourhoods U,, with nn" , Un = JxJ.

Proof. Let (xl,...,Xn) be a normal coordinate system and (U,W) the

corresponding chart. For y E Image(expx) n U we define the distance

function d(y) : =  [(Xa (y) _
Let B, (x) = ly c Image(expx) nU : d(y) <

Choosing r small enough, there exists a neighbourhood T7V(r) of Ox E

TM such that Exp maps W_(r) diffeomorphically onto B,(x) x B,(x).
For f -- 0 the neighbourhood W(f) shrinks to the set JOxJ C TXM.

Because of the continuity of exp and exp(Ox) = x, there is an f E (0, r)
such that exp(twy) E Bx(r) for all t E [0, 1] and wy E T7V(f).

We will show that (for f sufficiently small), any two points y, z E

Bf;(x) are joined by a geodesic which does not leave Bf;(x). Let -y be the

geodesic starting at y with velocity vector Exp-
1
(y, z). This geodesic

joins y with z by the definition of Exp.
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We have to show that for f small enough the curve 7 cannot leave

Bf:(x). The idea of the proof is as follows. Since this geodesic would have

to re-enter Bf (x), in the given coordinates it would have to be curved at

least of order 1 If somewhere outside Bf; (x). On the other hand, geodesics
are generalisations of straight lines. This should give a contradiction for

f small enough. While this is the geometrical idea of proof, it may not be

entirely clear from the analytical implementation which we will present
now.

If -y would leave Bi;(x), then the map t --+ d(7(t)) would have a

maximum which is bigger than f
.
At this maximum we have Ad o 7 = 0

dt

and 11d o -Y :5 0. We can directly computedt2

2 En . (( a)2 + a a) j:n 7arba )  a bd
a=1 a 1 (Jab

C

a_t2
do -y

d(-y(t)) d(-y(t))

where in the last equality we have used the geodesic equation. Since

_p,a’(X), a, b = F(a  b.) (X) a and F(ab,) (x) = 0,be bcL

we can choose the original r so small that Jab
bc

Xa (y) F(a,_)(y) is positive
definite for all y G B,(x). The curve -y does not leave Bx(r) by the

constructions of f. Hence we must have -Ld o > 0 at the maximum
dt2

which gives a contradiction.

2.7 Examples of connections

p. 125

In this section, we will introduce two examples of connections which
[I p. 137]

will both become important in Chap. 3.

2.7.1 The Levi-Civita connection

The following definition is a generalisation of Euclidean space

(An, ("’61) and Minkowski space (An’ ) to real manifolds which are

not necessarily affine spaces.

Definition 2.7.1. A pseudo-Riemannian manifold (M, g) is a real man-

ifold M together with a symmetric (0) -tensor field g which is everywhere2

non-degenerate. We will often simply write (u,v) instead of g(u,v).

The norm of a vector u with respect to g is defined by 1jull = V-lg(u,u) 1,
but in general it is not a norm in the sense of linear algebra (the triangle
inequality only holds if g is positive or negative definite). Let i, j, v E

11’...’nj and define
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-1 if i =j < V,

(770 ij
1 if i =j > V,

0 otherwise.

If (M, g) is a pseudo-Riemannian manifold then there is a v G I nj
such that for each point x E M there is a basis enl Of T’M
which satisfies

g(ei, ej) = (,q,)ij . (2.7.6)

v times (n-v) times

We say that g has signature + ) and call v the in-

dex of g. A basis jej,...,enj satisfying Equation (2.7.6) is called an

orthonormal basis and a local frame JE,.... En I such that for each x

in its domain of definition IEl (x).... En(x) I is an orthonormal basis is

called an orthonormal frame.

Definition 2.7.2. A pseudo-Riemannian manifold is called a Rieman-

nian manifold if g is positive definite and is called a Lorentzian manifold

if g has signature (-, +,... I +).

Lemma 2.7. 1. Let (M, g) be a pseudo-Riemannian manifold. Then

each x E M has a neighbourhood U which is the domain of an orthonor-

mal frame.

Proof. Let U be a coordinate neighbourhood of x and denote the in-

duced GauBian frame by 1 91.... an I. We apply a variant of the Schmidt

orthogonalisation procedure to this frame. There exist functions A, on

U such that U1(X) := En
’

Aj(x)aj satisfies g(Ul, Uj) =h 0 at all pointsj=1 1

x U. We will use an induction argument in order to define a frame

El, . . . , En I which is orthonormal up to a permutation of the frame

vector fields. Let tj = U111JU111. Now assume that we have constructed

pointwise linearly independent vector fields jEj,...,Ej_jj such t*hat
g(Ek, Ej) = 0 for k 1 and g(Ek 7 Ek) 1. There exist functions Al on

U such that Ui(x) Ej..=, A’j (x)aj does not lie in spanfEj,...’ Ej_jj
and

g (Uj, Ek)
ji = Ui

k=1
9(tki kk)

Ek

satisfies g(&j, 0j) =7 0. The vector field E-i = U_j1jj U-ill is well defined and

satisfies g(tj I & == 11
7 9(& 7 & = 0 for k E 11, . . .

,
i - 11. Finally, let

fE17 .... En} be a suitable permutation of It, .... 7
t" 1. 1

Minkowski spacetime has a metric q which is constant with respect to

the usual derivative D, i.e. Dq = 0. This is equivalent to the fact that

parallel transport of vectors is an isometry. Furthermore, D is the only
torsion-free connection which satisfies this requirement. For a general
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pseudo-Riemannian manifold, there exists a unique connection for which

an analogous statement holds.

Theorem 2.7. 1. Let (M, g) be a pseudo-Riemannian real manifold.
Then there exists a unique torsion-free connection V which satisfies
Vg = 0.

This connection is called the Levi-Civita connection.

Proof of Theorem 2.7. 1. Recall that the connection V is torsion-free

if and only if VUV - VVU = [U, VI for all vector fields U, V. A short

calculation shows that the condition Vg = 0 is equivalent to U (V, W) =

 VUV, W) +  V, VUW). The strategy for the proof is to use these two

conditions in order to calculate the only possible candidate for the Levi-

Civita connection. It is then easy to verify that this candidate satisfies

all the relevant equations.
To exploit that V is assumed to be torsion-free consider the difference

U (V, W) - W (U, V) = (VUV, W) +  V’ VUW)
- (’7WU’ V) - (U’VWV)

= (VUV, W) - (U’VWV) + (IU’ W1, V)

If we add V  U, W) = (VVU, W) +  U, VVW) to this equation the right
hand side becomes (17UV, W) +  17VU, W) + (U, IV, W]) +  [U, W], V).
Here we can eliminate (VVU, W) using that V is assumed to be torsion-

free: (VVU, W) = (IV, U], W) + (VUV, W). Putting everything together
we finally obtain the Koszul Formula

 17UVI W) (U  V’ W) + V w, W) - W (u, V) - (u, IV, WI)
2

+ W, [W, Ul) - (w, IV, Ul) (2.7.7)

1

The following proposition gives a slightly more geometric characterisa-

tion of the Levi-Civita connection.

Proposition 2.7. 1. Let (M, g) be a pseudo-Riemannian manifold and

V be a torsion-free connection. Then Vg = 0 if and only if parallel

transport is an isometry.

Proof. Assume first that V is the Levi-Civita connection. Let t i--> - (t) be

a curve and t i--4U(t), t  --> V(t) be two parallel vector fields along -Y. Then

we calculate d
(U(t), V(t)) = V (t) (U(t), V(t)) V (t)U, V(t) +

dt

(U(t), V (t)V) = 0 which implies that (U, V) is independent of t. Con-

sequently, parallel transport is an isometry.
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Conversely, assume that parallel transport is an isometry and let

u, v, w  be vectors. We choose a curve -y with  (O) = w and parallelly
transported vector fields U, V with U(O) = u, V(O) = v. Then we obtain

0 = V (t) A V) =’(’Nt)g)A V)+ V (t)u’ V(t))+(U(t), V (t)v =

(V (t)g) (U, V). At t = 0 this implies 0 = (Vwg) (u, v) which proves the

assertion.

2.7.2 The Weyl connection

Let M be a real manifold and g be a metric on M. A second metric

is conformal to g is there is a positive function Q: M ---> R+ \ f0 1 with

g = 02j. A conformal structure Q is an equivalence class of conformal

metrics. In the next chapter we will see that the Michelson Morley exper-

iment directly leads to a conformal structure rather than a Lorentzian

metric.

Given a conformal structure (t there is a class of adapted connections.

This generalises the Levi-Civita connection of the previous section.

Definition 2.7.3. A triple (M, Q , V), where M is a n-dimensional man-

ifold, C-’ a conformal structure on M, and V a torsion-free connection is

called a Weyl structure i for every
,
g C- (t there exists a one-form  p suchf

that Vg = W 0 g. The connection V is called a Weyl connection

In the following we will use the exterior derivative dw of a p-form
w E TjO(M) (cf. Theorem 2.5.1). In Theorem 2.7.2 below we will also

use the lemma of Poincar6 (Theorem 2.5.5).
Readers who have omitted Sect. 2.5 can replace dWab by 2!a[aWb]

Using thi equality the lemma of Poincar6 can be understood in our

special case.

Lemma 2.7.2. Let (M, Q , V) be a Weyl structure. Then the 2-form F

AdW is independent of g E it.

Proof. Let g E (t and j = Q2g. Then we have

Vj 2S?dS2 0 g + Q2Vg = ( p + 2dlnf?) 0

Hence F = dW = -

-1 d o does not depend on the choice of g2 2

The 2-form F is called the length curvature of the Weyl structure. We

will motivate this term in Sect. 2.8.1 below.

Theorem 2.7.2. Let (M, (t, V) be a manifold with Weyl structure and

x E M. Then x has a neighbourhood U such that for the induced Weyl
structure (U, (t, V) the following statements are equivalent.

(i) F = 0,
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(ii) There exists a e (t which has Levi-Civita connection V.

Proof. We first show that (ii) implies (i). Let g (t be any metric and

j = 02g such that Vj = 0. Then we have Vg (p (9 g

2SMS? (& j = Q3dQ (D g. Hence W = QMS? and dW = 0.

For "(i) =: (R)" note that F = ld o = 0. Hence an application of the
2

lemma of Poincar6 (Theorem 2.5.2) implies the existence of a neighbour-
hood U of x and of a function f : U ---> R with df = W. Consequently,

V(e-fg) = -e-fdf 0 g + e-fdf (3 g = 0. 1

Corollary 2.7. 1. Let (M, E’, V) be a Weyl structure and assume that

there exists a parallel, non-vanishing n-form y. Then there is an (up to

sign) unique metric g (t such that V is the Levi- Civita connection of

g and I S?(E,,. . . , En) I for every g-orthonormal basis fEl, . . .., En 1.

Proof. For any metric g (=- Q we define an n-form A as follows. We let

fEj,..., Enj be an orthonormal basis with dual basis fOl, - - -, O’l and

denote g(Ei, Ej) E I- 1, 11 by ej. Then A is defined by A = 01
A ... A on.

Since An(TM) is I-dimensional there is a unique g E Q such that

p. For this metric and any vector v we calculate

0 = VV (y(El, . . . , E,,))
n

= (17vp) (E,,. . ., En) + 1: I_t(Ej,..., Ei-1, 17VEi, Ei+l,..., E,.)

n

= 1: I_t(Ej,..., Ei-1, g(17VEi,, Ej)EjEj, Ei+,,..., En)
i=1

n

= Eg(VvEj, Ei)ei

n

= Y- -2 Ej (Vv (g(Ei, Ej)) - (Vvg) (Ei, Ej))
i=1

n

n

=.= -E
2
cj o(v)g(Ej, Ej) =: -

2
P(V).

i=1

Definition 2.7.4. Let (M, ( , V) be a Weyl structure and -y be a smooth

timelike (or spacelike) curve. We call -y affinely parameterised if

V (t) (t) I  (t)

for all t in the domain of definition of -y.
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It is clear that timelike pregeodesics are affinely parameterised if and

only if they are geodesics.

Lemma 2.7.3. Let (M, (t, V) be a Weyl structure and t F--> -y be a smooth

curve with g( (t),  (t)) :h 0 for all t and all g E (t. Then there exists a

reparameterisation %s) = 7(t(s)) such that  is affinely parameterised.

If t  -4 -y(t) is affinely parameterised then s t-4 7(t(s)) is affinely param-

eterised if and only if there exist a, b E R such that s = at + b.

Proof. We denote - 4- by a dot, (), and
d

by a prime, Let %s)dt ds

-y (t (s)). Then

Xv (t) W’  W)

7 (0) ly (s(M)X’71Y(sm)

 ’ (S)
ds

 1(8)
ds

g(7Y(S) Is (t Tt dt

ds )
2

(g(V ’ (s)
ds

(s))
dt Tt

(ds )2 (dt
d2Sg( ds

g (s), (s))
Tt _ds dt2

(s),  ’ (s)) +Tt

implies that  is affinely parameterised if and only if

d’s ds 9(’V (t) W,  W)
dt2 dt gMt) I  W)

holds. The first assertion follows immediately from the fundamental the-

orem for ODES. If t -+ ’y(t) is already affinely parameterised, the differ-

d2s
ential equation reduces to  ft_2

= 0 and the second assertion follows. 1
13

2.8 Curvature

179

In Sect. 2.6 we have seen that the covariant derivative defines a notion p. 141]

of parallel transport along curves. Given a small loop -y: [0, 1] i--> M with

-y(O) = -y(l) = x, this parallel transport defines a map

R,y: TX’M --> TX’M’ VX  -4 P
ly
vX

While in Minkowski spacetime and in Euclidean space we always have

P
ly
vx =: vx, in general the vector P

ly
vx depends on the loop -y. The
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’Ya3, b f (a, b)

V

2
4 la,b

f(a, 0)
a,b

following theorem shows that if one restricts to rectangular loops then

there exists a well defined limit where -y ---> jxj.

Theorem 2.8. 1. Let (M, V) be a manifold with connection and x E M,
U, V, w E TxM. Then there exists a well defined tensor field

R: TM x TM x TM --> TM

(u, v, w) t--4 R(u, v)w

with the following property.
Let U C R

2 be an open neighbourhood of (0, 0) and f : U -+ M be an

immersed 2-surface such that f,,al = u, f,,a2 = v. For any a > 0, b > 0

with [0, a] x [0, b] C U let N,b be the closed curve

7a,,b: [0, 2a + 2b] --+ f(U) C M

f(t, 0) for 0 < t < a

t
f (a, t - a) for a<t<a+b

f(2a + b - t, b) for a + b < t < 2a + b

f (0, 2a + 2b - t) for 0 < t < a.

Then

lim
I

P = -R(u, v)w
(a,b) (o,o) ab 7abW

- W)
holds.

If U, V, W are vector fields with U., = u, V v, and W, w then

R(u, v)w is given by

R(u, v)w = (VUVVW - VVVUW - V[U, V]W)
Ix

The following section will be of great importance in Chap. 5. However, at

this point in time it is better first to skip forward.
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Proof. It is easy to check that

R(u, v)w = (VUVVW - VVVUW - V[U’ V]W)
Ix

does not depend on the extensions U, V, W and is therefore a tensor field.
4We denote the four segments of the curve ’Ya, b by 7al, b ’Ya, b) re-

spectively-. Let W(a, b) = P7a2, b
0 P’Yal, b (W) and observe that W depends

smoothly on (a, b). Rom the definition of parallel transport we have

Vf*,92W(a, b) = V 2, W(a, b) = 0.
a b

This and W(0, 0) = w immediately imply

R(u, v)w = - (V192V191W)(0,0)’
Observe that the curve segment is independent of a. In particular,

,ya4’ 4 which implies (P’d,b) w = W(O, b). Hence we obtainb
= ^YO, b

P W-W
Wb- ’/ab

I
P 4 OP 3 OP

2, OP’Yal, b (W) b ( ’Ya ,b ’Ya,b N b

b-
0 P’Ya, b

(W)
1

(PN4,b 0 (P’/a3,b 0 (P^/a2,b I (PNI,b)-I) (W))
P^ya4,b (P 3, (W(a, b)) - W(0, b)

b a ’Ya b

If b = 0 then W is simply the parallel transport of w along  al,b which

implies

Vf* 91W(a, 0) == V al, b
W(a, 0) = 0, (2.8.8)

and therefore

1
-’:: Iab (P^YabW - W) ’

b a(P74 b
(Vf*a,W(O, b)) - Vf*a,W(0,0))

I I
+ - (- (Py3 (W(a, b)) - W(O, b))b Pld,b a a,b

- Vf*a,W(O, b)). (2.8.9)

Since ’ya4,b does not depend on a the parallel transport along ’d,b) P’d,b’
does not depend on a either. By Proposition 2.6.2 the limit of the first

summand is therefore given by
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lim
I
P 4 (Vf a,

W(0, b)) - Vf* a,
W(0, 0)

a,b-0 b b

4= lim (Vf*a,W(O, b)) - Vf*a,W(O, 0)
b-0  (PN,b
Vf*a2Vf*Ca1W(O’ 0),

In order to complete the proof we need only to show that the second

summand in Equation (2.8.9),

1
 3(a, b) 4 (P’/a3,b(W(a, b)) - W(0, b)) - Vf*,91

W(0, b)bp’Ya,b(a ) I

has the limit 0 for (a, b) --> 0.

We will first show that this summand is continuous in (a, b). Since

 p (a, b) (P 3 (W(a, b)) - W(O, b)) - aVf W(0, b)= P’ya4, b ( ’Ya,b

depends smoothly on (a, b), an application of the Taylor formula yields

 o (a, b) (a) + 0 (b) + ab (a, b),

3 is constant whichwhere 0, 0,  are smooth functions. The curve ’YO,b
3implies P703, b

= id and therefore  p(O, b) = 0 for all b. The curve _Ya,O

is inverse to the curve ’Yal,O, In analogy to Equation (2.8.8) we obtain

Vf*a,W(0, 0) = 0 and therefore

V(a, 0) = P, 3’OW(a, 0) - W(O, 0) - a17f a,W(O, 0)
a

= P, 3’OW(a, 0) - W(O, 0) = 0.
a

Rom  o(O, b) = W(a, 0) = 0 we conclude that both 0 and 0 are con-

stant and that their sum vanishes. Hence we have W(a, b) == ab (a, b)
ab p(a, b) and

(a, b) (a, b) b_
I (

I

(P,,.3 (W(a, b)) - W(O, b)) - Vf*a,W(O, b))b a ,b

is smooth. In particular, ( is continuous. The equation  3(0, 0) = 0 follows

now from

lim (p7a3,b (W(a, b)) - W(0, b) Vf*,g,W(0, b),
a-0 a

for any b > 0. 1
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Definition 2.8. 1. The (1) -tensor R is called the curvature tensor (or3

Riemann tensor) of (M, V).

Lemma 2.8.1 (Bianchi identities). Let (M, V) be a manifold with

connection. Then R satisfies the second Bianchi identity,

(VuR) (v, w) + (VvR) (w, u) + (VWR) (u, v) = 0.

If V is torsion-free, then R also satisfies the first Bianchi identity,

R(u, v)w + R(v, w)u + R(w, u)v = 0.

Proof. Consider a normal coordinate system (xl,...,Xn) centered at

X E M and let U, V, W be extensions of u, v, w E TxM such that these

vector fields have constant components with respect to our coordinate

system. We have then [U, V]y = [U, W]y = [V, W]y = 0 for all y in this

coordinate neighbourhood and VU V = VV W = VW U = Ox. For any

vector field X we get
X X X

(VUxR) (V, W)X = VUx (R(V, W)X) - R(VUXVW)X
- R(V, VUXW)X - R(V, W)VUXX

= VUX(R(V, W)X) - R(V, W)VUXX
= VUX (VVVWX - VWVVX) - VV VWVUX

+ VW VVVUX
X

= QVU’ 1’7V"7WD. X.

The second Bianchi identity follows now immediately from Lemma 2.4.3.

For the first Bianchi identify we assume in addition that 17 is torsion

free. We calculate

R(u, v)w + R(v, w)u + R(w, u)v

= VuVVW -VVVUW +VVVWU -VWVVU

+VWVUV -VUVWV
= VU (’7VW - VWV) + ’7V (’7WU - VUW)

+’7W (VUV -’7VU)
0 + 0 + 0 = 0

Definition 2.8.2. Let (M, V) be a manifold with connection. The ten-

sor Ric(u,v) = tr(R(.,u)v) is called the Ricci tensor. We denote by
F E 02(M) the 2/n-fold multiple of the anti-symmetric part of Ric,

1
-

__T]F(u, v) =n (Ric (u, v) - Ric (v, u)). Fp. 137 ]

I I p. 184
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Lemma 2.8.2. Let (M, V) be a manifold with torsion-free connection.

Then F == -
1
tr(R(., -)) holds.

n

Proof Let fE1, . . . , En I be a basis, fw 1, n I be dual basis and u, v c

7’,,M. Rom the first Bianchi identity and the antisymmetry of R(., -) we
obtain R(u, v)Ea = -R(E,,, u)v + R(Ea, v)u and therefore

nF(u, v) a (R(Ea, u)v - R(Ea, v)u)
-w’ (R(u, v)E,,) = -tr(R(u, v)).

2.8.1 Applications to Weyl structures

The differential form F has a particularly geometric interpretation if V

is a Weyl connection, justifying the following definition

Definition 2.8.3. Let (M, (t, V) be a mani Id with Weyl structure.fo
Then we call F the length curvature and K, defined by R(u, v)w
K(u, v)w + F(u, v)w the directional curvature.

To motivate these terms coined by Weyl9 we will need the following
lemma.

Lemma 2.8.3. Let (M, Q-’, V) be a manifold with Weyl structure. Then

F = -Id p and g(K(u, v)w, w) = 0 for all vectors u, v, w and all g (E C2

Proof. Let U, V, W be tensor fields with U,, = u, V v, and W. W.

We can also assume that [U, V] = 0.

g(VUVVW, W)

(17ug) (17VW1 W) - 9(VVW’ VUW) +VU (g(VVW, W))

 O(UMVVW, W) - gTVW, VUW) + VU (2 V - g(w, W)

2(’7Vg) (W, W))
-W(U) IV 0 g(W, W) - 1(17vg)(WW)) -g(VVW’VUW)(2 2

+ 2U 0 V 0 g(W, W) -

2 vu(,P(V)g(w, W))

( O(U)v - g(w, W) + W(V)U - g(w, W))2

In the German original, they are called Streckenkriimmung and Richtungs-
kriimmung-



2.9 Variation of geodesics 143

+ - O(U) P(VWW’ W) - g(VVW’ VUW)
2

+ IU*V*g(WW) - 1(VUW)M9(WI W)
2 2

2 O(VUV)g(w, W).

This implies (using [U, V] == 0)

g(R(U, V)W, W) g(VUVVW - VVVUW, W)

-2 ((7UW) (V) - 07V O)M) 9(W, W)

I
- -dw(U, V)g(W, W).

2

Since W is arbitrary, we obtain tr(R(U, V)) nd o(U, V) which proves

the first claim. The second claim follows from2

g(K(U, V)W, W) = g(R(U, V)W, W) - g(F(U, V)W, W)

= -IdW(U, V)g(W, W) - g(- IdW(U, V)W, W) = 0.
2 2

Let w G TM and -y be a small loop of the type given in Theorem 2.8.1.

Then the parallel transport Plyw is approximately

P
ly
w;zz w + abR(u, v)w

w + abF(u, v)w + abK(u, v)w.

EW-L

It follows that I + abF(u, v) is the factor by which the parallel transport

stretches the (relative) length of w and that abK(u, v)w is the change of

direction of w due to the parallel transport. Since the parallel transport

of a vector does not leave its relative length invariant it is impossible to

compare lengths at different points. There is an important consequence

to this fact, the so-called clock paradox of second kind (cf. Sect. 3.3).

2.9 Variation of geodesics

In this section we investigate the infinitesimal analogue of I-parameter

families of geodesics.
This section is technical and can be omitted on first reading. It

is a prerequisitive for Sects. 4.5 and 4.6 in the chapter on pseudo-
Riemannian manifolds. Section 4.5 is concerned with metric preserv-

ing diffeomorphisms and used in the discussion of cosmological models

(Chap. 6). Sect. 4.6 is necessary for understanding the complete proofs

of the singularity theorems which are presented in Chap, 9.
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In Chap. 5 we will see that freely falling particles can mathematically
be described by (certain) geodesics. A cloud of such particles moving in

spacetime corresponds then to a smooth 3-parameter family of geodesics.
It is therefore of physical interest to study families of geodesics. Here we
will study the slightly simpler sub-case of I-parameter families and its

infinitesimal analogue.
Let f : Z --+ M be a differentiable map and recall that a (smooth)

vector field along f is a smooth map X: Z ---> TM with IrTM 0 X(X)
f(x) for all x G Z. We denote the space of vector fields along f by E’Q
Any smooth vector field X on M induces a vector field k: x t--> X.,

Xf(.,). A vector field U on Z also induces a natural vector field. along
f via x  -4 f,,Ux. Important examples of this construction are given by
vector fields along curves and by vector fields along canonical immersions

of submanifolds (cf. Sect. 4.4).

Lemma 2.9. 1. Let f : Z --> M, U, V E To’(Z), and X, Y E To’ (f
f

UX := (U,60OXa + FbaThen V c(f*U)bXc),qa is a well defined vector

field along f and satisfies the following properties.

f

(i) V UX is function-linear in U and R-linear in X;
f

(ii) V U(WX) = dW(U)X + W Vf UX for all functions W E C"O (Z);
f f

(iii) V Uf*V- V Vf*U - f* [U, V] = Tor(f* U, f* V).

Proof. We have to show that the definition is invariant under coordinate

transformations. Let 0 be a diffeornorphism of Z and 0 be a diffeomor-

phism of M. Then we obtain

f-’r,f

UX) V V)*U(x

(,q’Y O,3U-y(ajXaq0(0-1)5)00-1
a -1)-Y)(0jO0UJ)XC 0 0-1 aa+ rb  (ayfba,3(0
C

((UOa Xa + raiC(OOfbUO)Xc) 00-1.b Oa)
Hence the formula does not depend on the coordinates chosen for Z.

Let 0: M --> M be a diffeomeorphism. We obtain

Of
U,3a pdoa) 0 f Xd)UO*X = ( 0

+ Fba 0 f xd)aa (O0(0 0 f)bUO) (ador

(U,3 p_adoa) 0 f a 3feXd + (adoa) 0 f aoXd)e
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a b xd(C -0 ) of 19 ’U’O(Od0c) 0 f+ rb,(ae Of
e )19.

UO ((adoa) 0 f 19’8Xd + ((,g-a 0a) 0 fe d

+ Fba _0b) 0 f (adoc) 0 f)aefeXd) 0a_(’9e

The GauBian basis vector field with respect to the coordinates induced by

0 are given by 0.0a. Taking this into account we see that the Christoffel

symbols transform as given in Corollary 2.6.1. This implies that our

coordinate formula defines a well defined vector field along f. Equations

(i)-(iii) follow directly from our coordinate expression. I

If f is an immersion then the covariant derivative along f can be calcu-

lated entirely in M.

Lemma 2.9.2. Let f : Z ---> M be an immersion, U, V E Tol (Z), and

X, Y E To’ (f). Let 0, be vector fields on M which coincide with f.U
f

and X at all Points y f(x). Then we have V UX o f at all

X E Z.

This lemma justifies writing Vf*UX instead of (VCj) of. We will use

this notation extensively in Sect. 4.4.

Proof of Lemma 2.9.2. Let x E Z. Since f is an immersion there exists

a neighbourhood of U of x, a neighbourhood V C Kn-dim(Z) of 0, and a

local diffeomorphism F: U x V --4M with F(x, 0) = f(x) J6r all x c U.

We may extend U, X to U x V such that FU and X = X o F-’.

Then we obtain

(’7 ,

-

-b.’ ) o F = Ua,9 X o F _ (1,b,&akc) o FCJ a ’a

allia (Xb (F U)aXc=OiF a
o F-1) o F - (Tab, o F) *

alliajXbaa (F U)aXci9iF (F-1)i o F - (1-abc o F)*

Uja.Xb _ (_Vb (F U)aXc.J ac
o F)

Restricting the last expression to U x 101 gives

(VCj9) o F(x, 0) == (Vf UX)
x

for all x E U C Z. I

Lemma 2.9.3. Let f: Z 4 M, U, V E 7-01 (Z), and X E To’ (f ). Then

the equation

f f f

R(f*U, f*V)X =Vf
U

Vf VX- V V V UX- V [U, V]X
holds
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Proof. The equation follows directly from the definition of the Riemann

tensor. I

Observe that f does not need to be an immersion and therefore f(z)
may not be an immersed submanifold. This is important for the following
application.

Definition 2.9. 1. A geodesic variation is a map f 6, 6) x (a, b) -4

M, (s, t)  --+ f (s, t) E M such that for each s the curve t F--> f (s, t) is a

geodesic. We denote the velocity of the geodesics by ft : =: T(,,t) f (19t) and

the deviation vector field along the geodesic f (s, -) by f, : = T(,,t) f (a,) .

Proposition 2.9. 1. Let f : (s, t)  -4 f (s, t) M be a geodesic variation.

f
Then ft satisfies the geodesic equation V tft 0 and the deviation

vector field f, satisfies the equation

f f f
v at V 9t fs +

R(f, ft) ft - (Vf at Tor) (ft f ,) - Tor (ft, V at fs) = 0.

Proof. The geodesic equation follows directly from the definition of a

geodesic variation. Observe that [f, ft] = [f. (0,), f. (at)] = f. [,9s, at]
0 and that therefore

=0

f f f

9, ft+
f

V atV ath =V atV V at [ft, f,] + t7at (Tor(ft, f,))

=0

f

R(ft, fs)ft+ Vf 0,Vf 9tft + (V ajor) (ft, f,)

f
+ Tor(ft, V at fs)

It is often sufficient to consider the infinitesimal analogue of geodesic
variations. This justifies the following definition.

Definition 2.9.2. A Jacobi field is a vector field J along a geodesic -y

which satisfies the Jacobi equation

V V J + R(J,  ) - (V Tor)( , J) - Tor( , V J) = 0.

Proposition 2.9.2. Let -y: [a, b) ---> M be a geodesic. The Jacobi fields
along -y span a 2n-dimensional linear space and any Jacobi field J along

7 is uniquely determined by J(a), V (a)J-

Proof. Without loss of generality we may consider a single chart which

contains the geodesic. The Jacobi equation reduces then to a system of
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n ordinary second order differential equations, or, equivalently, to a sys-

tem of 2n ordinary first order differential equations. Hence the assertion

follows from the fundamental theorem for ordinary differential equations

(cf. Theorem 2.4-1). 1

Corollary 2.9. 1. Let -y: [a, b] --> M, t F-4 exp,, ((t - a)u.,) be a geodesic.
A vector field J along -y is a Jacobi field which vanishes at x = -/(a) if and

only if there is a vector vx E TM with J = exp ((t - a) (ux + svx)).,9,.

Proof. It is clear that, given such a vector vx, J is a Jacobi field along

-y which vanishes at x. Proposition 2.9.2 implies that the Jacobi fields

along -y which vanish at x span an n-dimensional vector space and are

characterised by their velocity vector ’7 (a)J. The assertion follows since

’7 (’a) exp ((t - a) (u., + svx)). a, = vx

for all vx E TxM and TxM is an n-dimensional vector space.

Definition 2.9.3. Two points x, y E M are conjugate if there is a

geodesic -y joining x and y and a non-zero Jacobi field J along -Y which

vanishes both at x and y.

Proposition 2.9.3. Two points x, y G M are conjugate if and only if
there exists an ux E TxM in the domain of exp such that exp(ux) = y

and T, expx: T,,.TxM --- TyM fails to have maximal rank.

Proof If x, y are conjugate, there is a geodesic -/: [0, 1] -- M joining these

two points and a Jacobi field J along -y which is non-zero but vanishes

at x and y. Let ux be the uniquely determined vector which satisfies

exp(tux) = -y(t). By Corollary 2.9.1 there exists a vector vx E TxM \  01
such that J(t) = T(O,t) exp(t(ux + swx))(,9,). The assumption J(1) = 0

implies that the linear map T(o,l) exp(t(ux + swx)): K2 --* TM does

not have maximal rank which in turn implies that T". expx: T,,.TxM

TyM does not have maximal rank.

To prove the converse assertion, we just choose the vectors ux, vx : 0

by the requirement that expx (ux) = 0 and T.,,,,, exp ((A I ,=o
(ux + svx))ds

0. The vector field J(t) = T(O,t) exp(t(ux + swx))(i9,) along -y(t)
expx (tux) is then a non-zero Jacobi field which vanishes at x and y.

I

Proposition 2.9.4. Let y: [a, bJ -- M be a geodesic without conjugate

points. For every pair of vectors W-Y(a) E T-Y(a)M, 17v-y(b) IE T- (b)M there

is a unique Jacobi field J along -y with J(a) = W-Y(a) and J(b) = ?-D-y(b) -
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Proof. There are vectors U-Y(a) E Ty(a)M with -y(t) = expy(a) ((t - a)u_ (a))
and ii-y(b) E T-y(b)M with -y(t) = exp.,(b)((b - Oa-y(b))- Since -y does not

have conjugate points the linear maps

T(b-a),,,(, ) expY(a) : T(b-a)u,(,,.)T-y(a)M --- T-y(b)M

and

T(b-a)i,-,(,,) expY(b): T(b-a)i -,(b)T-y(b)M -4 T-y(a)M

are both isomorphisms. Hence there are vectors V-y(a) and, -y(b) such that

170-y(b) T(b-a)u,(.) exp_Y(a) (b - a)
d

(U-y(a) + SV-y(a)))ds ls=o

W-y(a) T(b-a)fi,(b) eXPy(b) (b - a)
d

(ft-y(b) + S’ -y(b))
ds I s=o

Let J, , J2 be the Jacobi fields defined by

J, = T(0,t) exp((t - a) (U-y(a) + 8V7(a)))(a,9)7
J2 = T(o,t) exp, ( (b - t) Oi-y (b) + 8 -y (b) ) ) (Os ) -

Then JI vanishes at -/(a) and has the value ’CV-y(b) at y(b) whereas J2
has the value W-y(a) at -/(a) and vanishes at -y(b). Observe that the sum

J, (t) + J2 (t) is well defined since 7rTm o J, (t) = 7rTM 0 J2 (t) = -y (t). By the

linearity of the Jacobi equation the vector field J = J, + J2 along -Y is also

a Jacobi field which has correct values at both 7(a) and -y(b). This proves

existence. Uniqueness is clear since the space of solutions has dimension

2n which is just the dimension of the vector space T-y(a)M (D T-y(b)M- I

Jacobi fields can also be used to calculate the differential of the exponen-

tial map restricted to an n-dimensional "vertical" subspace of Tu.TM
which consists of all v[,,] =

- !- (ux + tvx) I t=0 E Tu.TM, where vx E TxM.dt

Proposition 2.9.5. Let x E M, ux,vx E TxM, and J be the Jacobi

field along t  -4 -y(t) = exp(tux) with J(O) = 0 and V J(O) == v, Then

the differential of the exponential map in direction v[u) is given by

Tu;,: expx(v[u]) = J(I).

Proof. Let f: (s, t)  -4 expx (t (u + sv)) E M and

ft = T(,,t)f(,9t) = Tt(u+,,) expx((u + sv)[t(u+sv)])7
f, = T(,,t)f(a,) = Tt(u+sv) expx((tv)[t(,,,+,,)I).

Since f is a geodesic variation with f(s, 0) = x Vs the vector field

(f,),,,=o is a Jacobi vector field along -y which vanishes at 0. Rom
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f f

[f,, ft] = 0 we obtain V J =V atf, =V asft + Tor(f,, ft). At t = 0,

we have f, = 0 and ft = To exp. ((u + sv) [o])), whence V 1(0)

Fas) Is=O
To exp., ((u + sv) [o]) == To exp., ((v) [o]) = v. The Jacobi vector

as

field J also satisfies J(I) = T(0,1)f (,9,) = T(u) exp.,(vfu]). The asser-

tion follows since initial value and derivative characterise Jacobi fields

uniquely. I



3. Space and time

from a global point of view

The content of this chapter is mainly physical. In Sect. 3. 1 we show
p. 137 1

that the experiment of Michelson and Morley indicates that spacetime
[I p. 156]

admits a conformal structure. A conformal structure is not sufficient
to describe spacetime adequately. In Sect. 3.2 we generalise the no-

tion of inertial observers which leads to the existence of a projective
structure. (One of Einstein’s key observations was that this projective
structure is closely linked to the phenomenon of gravity. This will be

pursued in Chap. 5).
In Sect. 3.3 we use our physical postulates in order to show that

the conformal and the projective structures of spacetime form a Weyl
structure. Here we closely follow (Ehlers, Pirani, and Schild 1972).
The proofs in this section are technical and can be omitted without loss

of continuity. In Sect. 2.8 we introduce a further physical postulate
which restricts the Weyl structure to a Lorentzian manifold.

3.1 Light rays: the conformal structure

In Sect. 1.4 we have seen that spacetime is endowed with an invariant

field of light cones (cf. Postulate 1.4.1). In analogy to the discussion in

the previous chapter we will define these light cones infinitesimally, i.e.,
in the tangent spaces rather than in spacetime itself.

The discussion in Chap. I may seem to indicate that for each x E M

the tangential space TxM can be identified with (R’, TI). Since for each

non-degenerate bilinear form g., of signature (-, + . . . , +) there exist

linear coordinates (xo, x’, . . . ,
Xn- 1) such that gx = -d (x0)2 + Jij dx’dxj

(i, j E f 1, . . . ,
n - 11), one may be tempted to simply replace Minkowski

spacetime (An, 71) by a general Lorentzian manifold (M, g) - However, the

Michelson-Morley experiment only determines the paths of light rays.1
In other words, from the Michelson-Morley experiment alone one can

only infer the existence of a conformal structure (An’, E,,)’ where (t17 =
ff?277 : 0 E COO(An ,

R+ \ 101) 1. (In Sect. 1.4 we used the affine structure

For the definition of wave length we needed the Euclidean structure of

space. This seems to indicate that implicitly we used a Lorentzian metric
rather than a conformal structure in order to interpret the Michelson-Morley
experiment. However, the outcome of this experiment is a null-effect, i.e.,
, AZ ,z 0 which is independent of the Euclidean structure chosen.

ute
M. Kriele: LNPm 59, pp. 151 - 169, 1999© Springer-Verlag Berlin Heidelberg 1999
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of A’ to single out a constant representative n E (1_1’77 .
This is not possible

for general manifolds.)
Hence in a global setting the Michelson-Morley experiment leads to

the following postulate.

Postulate 3.1.1 (Existence of a conformal structure).
(Conformal) spacetime is a pair (M, Q ), where M is a n-dimensional

mani Id and (t a conformal structure of signature (-, + Thisfo

conformal structure is given by the paths of light rays.

We will call a conformal structure of signature (-, +, . . . , +) Lorentzian.

We will see that, given a Lorentzian conformal structure, it is possible
to recover light rays (cf. Postulate 3.1.2 below and the discussion leading
to it) -

Definition 3.1.1. Let (M, (t) be a manifold with Lorentzian conformal
structure. A null (or lightlike) hypersurface N is a hypersurface such

that (for any g E (t) the induced metric on N is positive semi-definite
but not positive definite.

Let (M, ( ) be a manifold with a Lorentzian conformal structure and

N C M be a null hypersurface. At each point x E N there exists a

unique 1-dimensional subspace 1., C TM which is tangent to N and

satisfies g(v, v) = 0 for all v E lx, g E C For, if there where two such

vectors V1 i V2 E TxN which were not collinear then there would exist

a vector w E spanfvi , V21 with g(w, w) < 0 for all w E t But this is

impossible since g restricted to TxN is positive semidefinite. If U, V are

vector fields with Ux E lx \  Ox I I Vx E lx \ jOx I for all x c N then the

integral curves of V and U in N are reparameterisations of each other.

Definition 3.1.2. Let (M, (_") be a manifold with Lorentzian conformal
structure and N C M a null hypersurface. A curve -/ in N whose velocity
vector satisfies g( , =’O for every metric g E Q is called a conformal

null geodesic

Lemma 3.1.1. Let be a conformal null geodesic and g c Q . Then -y

satisfies the differential equation

 a + gad ’9bgdc C9dgbc  b c 11  a.
2

Proof. First we will show that the coordinate expression is invariant with

respect to coordinate transformations and with respect to changes of the

representative g G C If V is the Levi-Civita connection of 9 then we have

7a + gad 19bgdc ’9dgbc
2
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whence we have only to show that for any other metric e
2f
g E (E"with

Levi-Civita connection t’ we have V  11 But this follows from

e-2f9ad Ob (e2fgdc) 1Od(e2fgbc)  b c == gad abgdc 149dgbc  Y
2 2

0

+ 2abf a _ 9
ad

adf gbcyb c

Let N be a null hypersurface containing -y. We may chose coor-

dinates (xl,...,xn-1 ) for N such that 91 spans 1,, for each x. Since

the bilinear form gJspanJa2-.’a,,_11 is positive definite and 91TN does

not have full rank, we have gii = OVi E f 1, . . . ,
n - I I -

We may ex-

tend the coordinate system to (xO.... I
Xn- ’) such that g (,9o, 91) = -I

at N. In these coordinates we have (after normalising  )  = a, and

we obtain gad (abgdc "adgbc)  b c = !gad (_adg1 1). Since in our co-
2 2

ordinates we have 0, the lemma is proved once we have seen that

9ad (_,g011) 11 (al)a or, equivalently, adgll  agad = -J1. This equa-d

tion follows from 9igll = 0 Vi G f 1, n - I

Corollary 3. 1. 1. Let v E T,,M \ fOJ be a vector with g(v, v) = 0. Then

there exists an (up to reparameterisation) unique conformal null geodesic

-y through x = -y(O) with  (O) = v.

Proof. By the fundamental theorem for ODEs, given any function A(t),
the differential equation

 a + gad ’9bgdc ’9dgbc  b c - A a = 0

 

2

has a unique solution for any v E TxM. It is easy to see that for any two

functions A,  the solution curves are identical up to a reparameterisa-
tion. I

The preceding corollary shows that at each point there is a unique con-

formal null geodesic in any direction Rv where g(v, v) = 0 for all 9 E C

This implies that there are exactly as many conformal null geodesics
as there are light rays. In addition, it is easy to see that in the case of

the Lorentzian conformal structure induced by Minkowski spacetime the

light rays defined in Sect. 1.4 and the conformal null geodesics coincide.

Hence we feel justified to link our infinitesimal Lorentzian conformal

structure to light rays in spacetime by identifying them with conformal

null geodesics.

Postulate 3.1.2 (Light rays). The light rays of spacetime are the con-

formal null geodesics of its Lorentzian conformal structure.
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A Lorentzian conformal structure is all we need in order to investigate
causality. The following definition is a straight forward generalisation of

Definition 1.4.6.

Definition 3.1.3. Let T be a Lorentzian conformal structure of signa-
ture (-, +,..., +), g E   , and A, U c M.

(i) A vector w is called spacelike, ifg (w, w) > 0, timelike if g (w, w) <

0, and lightlike (or null) if g(w, w) = 0. The vector w is called

causal if it is timelike or lightlike.
A vector field V is timelike (respectively, lightlike or null, causal,
spacelike) if for each x E M the vector Vx is timelike (respectively,
lightlike or null, causal, spacelike).

(ii) The Lorentzian conformal structure (t is time orientable if there
is a global timelike vector field V.

Assume that (E is time orientable. A time orientation is an equiva-
lence class of timelike vector fields V where V - W if g(V, W, ) < 0

at some point x E M.

Let [V] be a time orientation of ( . A causal vector u is called future

directed (respectively, past directed) if g(u, V) < 0 (respectively,
g(u, V) > 0).

(iii) A curve -y is called spacelike (resp., timelike, lightlike, causal,
future directed, past directed) if all its velocity vectors  are space-

like (resp., timelike, lightlike, causal, future directed, past directed).
A timelike curve is often called a world line when one whishes to

emphasise that it can represent the history of a (small) material

object.

(iv) The chronological future of a set A relative to U is

I+ (A, U) x cz M I a future directed, timelike curve

-y C U from A to xJ

The causal future of a set A relative to U is

J+ (A, U) = Ix E M 3 a future directed, causal curve

-y C U from A to xJ

There are analogous definitions for the chronological past l- (A, U)
and the causal past J- (A, U) of A relative to U. IfU = M we omit

the term "relative to M" and write T+(A), etc. If A == fxJ is a

single point we write I+ (x, U) etc.

Definition 3.1.3 is independent of the chosen representative g E t

Lemma 3.1.2. Let x E M and U be an open neighbourhood of x. Then

I+ (x, U) is open.
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Proof. Let y E I+ (x, U) and -y C be a timelike curve from x to y. Choose

a coordinate system (xo, . . . ,
Xn- 1), let V C U be a (small enough) com-

pact neighbourhood of y, and let z E V n -/. Then the (coordinate)
straight line f from z to y is timelike. By compactness of V there exists

an a > 0 such that any straight line  ’ from z with Z(f, f’) < a satisfies

supf0’(t)’Nt)) : f’(t) G VI < lsupfg( (t)’i(t)) : f(t) G VI < 0.
2

Hence these lines are all timelike in V. Since they fill a whole neighbour-
hood of y the assertion is proven. I

The set J+(x,U) does not need to be closed relative to U. However, as

we will see later, J+ (x, U) is closed if U is chosen small enough.

Corollary 3.1.2. Let U be open and A be any subset of U.

I+ (A U) = 1+ (1+ (A U), U) = I+ (J+ (A U), U) = J+ (1+ (A U), U)

C J+(A U) = J+ (J+ (A U), U) -

Proof. The only inclusions which are not obvious are I+ (J+ (A, U), U) c

I+ (A, U) and J+ (1+ (A, U), U) C I+ (A, U).
Let x E I+ (J+ (A, U), U). Then there exist a y E A and a z E

M, a causal curve M: [0, 1/2] -- M from y to z and a timelike curve

A: [1/2, 1] --> M from z to x. The concatenation - : [0, 1] -- M of 4

and A is a (piecewise) causal curve from y to x which is timelike near x.

Fix a metric g e  ,’ and let U be a timelike vector field along -y which

satisfies U(1) =  (1). There is an 6 > 0 such that g( (t),  (t)) < -,E for

all t E (I - c, 1). Let 0: [0, 11 -4 R+ be a smooth function which satisfies

0(0) = 0(1) = 0 and  (t) > 0 for all t C- [0, 1 - 6]. For any (small enough)
s > 0 let f (s, t) = expy(t) (s0(t)V(t)). The curves t  --+ f (s, t) all connect

y with x and f(0, t) = -1(t). We denote derivatives with respect to t by
a dot and with respect to s by a prime. We calculate

(g(f (s, t), f (s, t)))’ = Vfas(g(f(s, t), f (s, t))) = 2g(Vfif, f)

= 2g(Vff’, f) = 2g(V (OV), 2 g(V,

Hence we have (g(j(s, t), j(s, t)))’(O,t) < 0 for all t E [0, 1 - c] and the

curves t  -4f (s, t) are timelike on [0, 1 - F-] for s > 0 small enough. Since

we have g( (t),  (t)) < -E < 0 for all t E (I -,E, 1] the curves also satisfy

g(j (s, t), f (s, t)) < -6/2 < 0 for sufficiently small I s 1. This proves that

we have obtained a timelike curve t 1-4 f (so, t) from y to x. This curve

may have a kink at the parameter value 1/2 where the original curve -Y

passes through z. Using Lemma 2.1.7 and a coordinate chart it is not

difficult to smooth out t  -4f (so, t) near t = 1/2 while preserving that

this curve is timelike.

The inclusion J+(I+(A,U),U) C 1+(A,U) can be shown analo-

gously. I
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Lemma. 3.1.3. 1+ (A) = int(J+ (A)), J+ (A) C I+ (A).

Proof. By Lemma 3.1.2, I+(A) = U.CAI+(x) is open. The inclusion

I+(A) C int(J+(A)) is clear. Let x c- int(J+(A)). Since int(J+(A))
is open, there is an y E 1-(x) n int(J+(A)). Hence x E I+(y) C

1+(J+(A)) = I+(A).
Let x E J+(A), -y be a causal curve from A to x, and.U be a neigh-

bourhood of x. Since any small enough deformation of -y has future

endpoint in U, we can deform -y thereby obtaining a timelike curve from

A to u. I

Definition 3.1.4. Let (M, Q ) be a Lorentzian conformal structure, x E

M, and U be an open neighbourhood of x. We call

C:(U) = fy E M: 3 a future directed conformal null geodesic

-/ C U from x to yj

the integrated future light cone of x relative to U. There are analogous
definitions for the integrated past light cone and the integrated light
cone. If U = M, we omit the term "relative to M " and write Cx+, Cx-,
and Q,

Proposition 3. 1. 1. Let (M, Q ) be a manifold with Lorentzian confor-
mal structure. Then each x E M has an open neighbourhood U diffeo-
morphic to Rn such that

(i) C (U) \ jxj is a smooth hypersurface which is diffeomorphic to

sn-2 x R,

(ii) C: (U) n I+ (x, U) = 0,
-’2

(P.
i) CX+ (U) C I+ (X, U) = J+ (X, U).

P. 158

Proposition 3.1.1 will be a corollary to Lemma 3.1.4 below which is

a result from Lorentzian geometry. Choose a representative g E V_’ and

denote the associated Levi-Civita connection by V. The exponential map
allows us to identify the causal structure of a convex neighbourhood of

x E M with the causal structure of an open, convex set of the tangent

space at x.

Lemma 3.1.4. Let (M, (t) be Manifold with Lorentzian conformal struc-

ture, g (=- ( , and U be a convex neighbourhood of x E M with respect to

the Levi-Civita connection of g.

(i) y E I+ (x, U) (respectively J+ (x, U)) if and only if y = expx (v)
where v a future pointing timelike (resp., causal) vector.

(ii) J+ (X, U) = I+ (X, U),

The complete proof of Proposition 3.1.1 requires the material from page 129

immediately after the proof of Proposition 2.6.4 up to the end of Sect. 2.6.
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Proof of Proposition 3. 1. 1. Choose any g E Q and let U E T,,M be a

timelike vector with g(u, u) = -1. Each vector V E TM can be uniquely

decomposed as v = vOu + vi- here vi- E u’ v E TM : g(u, v) = 01
and vo E R. The bilinear form h(v, w) = g(v, w) + 2vowo is a Euclidean

scalar product on T,,M. For every E > 0 let B,(O.,) = fv E
"
M

h(v, v) < Ej. This set is obviously a neighbourhood of 0., in T.,M. A

similar argument as in the proof of Theorem 2.6.2 shows that U,

expo.. (B, (0,,)) is a convex neighbourhood of x for small enough E.

The set S, = fv G T.,M : g (v, v) = 0, g (u, v) = - I -,,/-E/-21 is a

submanifold of TXM which is diffeomorphic to the (n - 2)-dimensional
round sphere Sn-2 = fz c Rn-1: rn-l(Zi)2 I I and which lies in the

boundary of B, (Ox). The map (0, 1) x S, --+ M, (t, v) i- expx (tv) is a

parameterisation of Cx+(U,) \ jxj which proves the first claim (i).
Since the map exp,,: B,(Ox) --> U, is a diffeomorphism assertion (ii)

follows from Lemma 3.1.4 and the fact that every causal vector W E

B,(Ox)q is either timelike or null. Assertion (iii) is a trivial consequence

of Lemma 3.1.4 (ii). I

Proof of Lemma 3.1-4. (i): We prove the statement for 1+ (x, U) (the

proof for J+ (x, U) is analogous). The exponential map is a diffeomor-

phism of a neighbourhood 0 of Ox E TxM onto U. For any geodesic -y

we obtain V (g( ,  ) = 2g(V  ,  ) = 0 whence the velocity vectors of

geodesics do not change their causal class. It follows that exp, maps

timelike vectors into T+(x,U). We have to show that for each point

.,M is necessarily timelike.y E 1+ (x, U) the vector (exp,,) (y) = v E T

The double cone fv E 1 : g(v, v) = 01 divides 0 \ Ox
into 3 connected components: the future and past full cones of timelike

vectors (Ox,+, Ox’,-) and the set of spacelike vectors (C-.’,’). Applying
the diffeomorphism expx: 0 --+ U we see that the set Cx(U) jz E

U : 3V E Ox with z = exp., (v) divides U into the sets CxO, CxO,
co’s,
X

respectively. For every y -T+ (x, U) there is a timelike curve

-y: [a, b] - U, t 1--4 -y which connects x and y. From g( (a),  (a)) < 0

we know that -y must initially enter Cx,+. If the assertion does not hold

then y E Cx+ (U) U Cx,’. Since 1+ (x, U) is open we can assume without

loss of generality that y E Cx,’. Hence -y must intersect Cx at some point

7(to) where -y leaves Cxo,+. Since  (to) is timelike and future directed it is

transverse to Cx at -y(to) and points into C’,+. But this is a contradiction

to the construction of the point -y(to).
For (ii) it is sufficient to note that the set of causal vectors in TxM

is the closure of the set of timelike vectors in TxM. I
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p. 3.56 1
Since a Lorentzian conformal structure allows to measure angles and

p. 159]
relative lengths (at a given point), it is sufficient for spatial geometry at

one point. We just loose an absolute calibration.

3.2 Inertial observers: the projective structure

So far we only have considered light propagation. In order to specialise
our structure further we must take into account other fundamental prop-

erties of nature. In Chap. I inertial observers have played an important
theoretical r6le. Since they are not subject to any physical forces one can

physically implement inertial observers (or particles) by freely falling ob-

servers (or particles). We will use freely falling or inertial observers as the

other input into our theory besides the Lorentzian conformal structure

induced by light rays.

The following postulate reflects that the movement of an inertial

observer depends on his/her initial velocity and initial position. This is

the main content of Galilei’s law of inertia.

Postulate 3.2.1 (Existence of inertial observers). Through any

point x E (M, g) and for any timelike direction Ru there exists (up to

parameterisation and extension) exactly one inertial observer -Y: R -- M

which passes through x with velocity  11 Ru.

Postulate 3.2.1 singles out a collection of paths in spacetime. In Minkows-

ki space, inertial observers move along straight, timelike lines. This is

again a global characterisation which we need to overcome by formu-

lating it infinitesimally, i.e. in the tangent bundle rather than in space-

time itself. An infinitesimal description of (unparameterised) inertial ob-

servers in Minkowski space is that their spatial acceleration vanishes.

This property can be generalised as follows.

Postulate 3.2.2 (Law of inertia). For each x E M there exists a

chart (UxWx) centered at x such that with respect to the corresponding
coordinate system we have for all inertial observers passing through x

d27a
11  a.

dt2

at x. The chart maps W,,: Ux --> R’ depend smoothly on the parameter

X.

While by its very formulation Postulate 3.2.2 is independent of the cho-

sen charts, we need to express it in an arbitrary coordinate system. In

Sect. 2.6 we have seen that the derivative of vector fields is coordinate

dependent and therefore not well defined in a general manifold. How-

ever, we can use Theorem 2.6.1 and Corollary 2.6.1 in order to define a
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connection with respect to which Postulate 3.2.2 can be formulated in a

manifestly coordinate free manner.

Let (U, ( ) be any chart and x E U. We define the Christoffel symbols
F with respect to this chart at x byb’,

a
ap 192Xh

Fbc
19xhq; bCq;; C’

where (x x’) are the coordinates with respect to the chart (Ux, ( x)
provided by Postulate 3.2.2. We will now prove that this construction

gives a well defined connection 17. Let (1 ,O) be a second chart with

x E 1 . Then we have Pba, - a-: ’
We need to show that these twoIT a -F5X 93  a.

definitions give the same connection. Indeed, we calculate

a
9. a a2Xh

CFb
axh q.,t-b,% c

aj a a, k a  axh 9.: l

&7& axh qj b TX-1 5  

Cqj a 9; k 2Xh 9, l 0, m axh a2; l

lq’: k 5Xh 9., b
+

-5X---1 O’ ca;-b

a., l 9._ m a, _k a2Xh iqj a 92,;J

  X,’k 5y -57X-b Yxh
+

_5X__1,qj ca; b

qj a a,7 m
^k
r-

-57X_1 5_X  _O b
+

  X,k ,q.; c ,9, ,- b im,

which is exactly the transformation formula provided by Corollary 2.6. 1.

Thus we have a well defined torsion-free connection r and Postulate 3.2.2

can be restated as follows. There is a connection V such that inertial  P- 1- 5,811

observers are pregeodesics. I p.-127
Given our collection of inertial observers, 1A,  Mj.,EM is not the

P, 129 1

only collection of compatible charts such that the formula in Postulate
[I P. 161]

3.2.2 holds. In fact, Corollary 2.6.3 implies that exactly those collections

I(Vxi Ox)JxEM which induce torsion-free connections that have the same

pregeodesics as V are also possible choices. This implies the following
corollary.

Corollary 3.2.1. Postulates 3.2.1, 3.2.2 determine a,projective struc-

ture 113 such that each particle is a pregeodesics with respect to any 17 E 93.

Weyl characterised the connection as a field which forces a particle to

be transported parallelly with itself in space and time. Thus we have

arrived at a geometrical explanation for the law of inertia postulated by
Galilei.

3 In order to understand the corollary below we need to know a little bit more

about projective structures.
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3.3 Compatibility: Weyl structure

We have obtained a Lorentzian conformal and a projective structure but

the relationship of these two geometrical structures is still unspecified.
We will now introduce a further postulate which links observers and

light rays and therefore these two structures. It is an experimental fact

that one can chase light rays with material observers arbitrarily closely,
provided one uses enough energy. The following is a formalisation of this

idea.

Postulate 3.3.1 (Compatibility with the causal structure).
Each x E M has a neighbourhood U such that for all y E U \ JxJ we

have

y = -y(t) for an inertial observer -y through x  --* y G 1+ (x, U) UI- (x, U).

As a first consequence of this compatibility axiom we can determine light

rays using the connection instead of the Lorentzian conformal structure.

Lemma 3.3.1. The conformal null geodesics coincide with those pre-

geodesics which are somewhere lightlike.

Proof Let x E M and let U be the intersection of the neighbourhoods of

x which are provided by Proposition 3.1.1 and Postulate 3.3.1. Let p be

a conformal null geodesic from x to some fixed point y E U. Proposition
3.1.1 implies that y lies in the boundary of 1+(x,U). Hence there is

a sequence of points yi E 1+ (x, U) which converges to y. For each i

let 7i: [0, 1] F--4 U be the pregeodesic which corresponds to the inertial

observer which moves from x to yi (cf. Postulate 3.3.1). Let v \ fOJ be

an accumulation point of the (bounded) sequence  i(O) E T,,M and let

-y be the pregeodesic with  (O) v. By the continuous dependence of

solutions of differential equations on initial conditions and parameters

(cf. Theorem 2.4.1) there are for each point -y(s) (s E [0, 1]) and each

neighbourhood V of -y(s) infinitely many pregeodesics -yi which intersect

V and whose velocity vectors at s converge to :y(s). This implies that

-y is causal and that -y C I+ (x,U). Since yi -* y and T! is compact the

pregeodesic -y reaches y. The inclusion J+(I+(.T,U),U) = T+(x,U) and

y c -y n C: (U) imply -y c 1+ (x, U) \ 1+ (x, U) = Cx+ (U). Since Cx+ is a

null hypersurface and -y is lightlike (causal but not timelike) -Y must be

a conformal null geodesic. That -y coincides with M follows now from the

uniqueness of conformal null geodesics.
For the converse we simply need to note that both pregeodesics which

have an initial lightlike velocity vector and conformal null geodesics
are uniquely determined by initial point x and initial velocity direction

R (O). I

In the rest of this section we will show that our postulates imply the

existence of a natural Weyl structure.
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Theorem 3.3.1. Let (t be a Lorentzian conformal structure and 93 be

a projective structure such that the Postulates 3.1.1, 3.2.1, 3.2.2, and

3.3.1 are satisfied. Then there exists a unique V E 93 such that for all

g E Q-" there is a one-form  o with Vg =  o (9 g.
I-P

The proof of this theorem will be split into several lemmas.

Lemma 3.3.2. Let g be a Lorentzian metric and ’  abc 7-- ’: (ab,) be a

totally symmetric tensor such that zA (v, v, v) = 0 for all null vectors v.

Then there exists a one-form V such that  A(abc) ’:-- 79(agbe) -

Proof. sym(d 0 g) clearly satisfies the condition of the lemma. We will

now verify that this is the only possible choice.

Let t be a vector with g(t, t) = -1 and e E t--L with g(e, e) = 1. Then

t e are null vectors and from

, Ab (t e, t e, t e) = A(abc) (tatbtc 3tatbe’ + 3tebec eaebe’) = 0

we obtain

0 ’ A(abc) (tatbtc + 3taebec), (3.3.1)

tatb + ea b C).0 ’ A(abc) (3 ec e e (3.3.2)

Setting
19C (3,A(abc) tatb + 2A(t, t7 t)tdgdc)

Equation (3.3.2) is equivalent to

A (e, e, e) = -3GA(abc)
tatb c) = t9(e) = g(e, e)?9(e) Ve E t-L.

Analogously, Equation (3.3.1) is equivalent to

A
(abc)

ea,btc = _I
A(abc) tatbtc

1
79(t) = 9(ab?9c)

a ebtc.
3 3

Finally, the definition of 79 implies

A(abc) tatbec = _

1
’0 (e) =

1
9(t) 019(6) = 9(abl9c) tatbec.

3 3

and

IA(abc) tatbtc = g(t, t)79(t).

By the polarisation identity for symmetric 3-tensors, we know that  A(ab,)
coincides with 9(a0c) on a basis and our claim is proved. 1

4 The proof of Theorem 3.3.1 is rather technical. It can be omitted without

loss of continuity.
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Proof. Let fEo, . . .
, E,,- 1 1 be an orthonormal basis and fwo, .

n- 1

be the dual basis. We can write L =: La & Wb (9
c
(9 Ea, where La

bc bc

La
.b

for all indices a, b, c. We consider lightlike vectors given by N =

Eo + COS(0)EA + sin(0)EB ,
where A -7 B and 0 E [0, 21r]. In order to

exploit the condition L(N, N) c(N)N, we expand L(N, N) as a Fourier

polynomial in 0. Using COS2 0 -1 (1 + cos(20)), sin 0 COS 0 -1 sin(20),2 2

and sin
2
0 = -1(1 - cos(20)), we calculate

2

L(N, N) = L(Eo, Eo) + COS2 (0)L(EA , EA) + sin2(0)L(EB I EB)

+ 2 cos(O)L(Eo, EA) + 2 sin(O)L(Eo, EB)

+ 2 sin(O) cos(O)L(EA, EB)

= L(Eo, Eo) +
I
(L(EA, EA) + L(EB, EB))

2

+ 2L(Eo, EA) cos(O) + 2L(Eo, EB) sin(O)

+ I(L(EA, EA) - L(EB, EB)) cos(20) + L(EA, EB) sin(20)
2

= c(O) (Eo + cos(O)EA + sin(O)EB)

for some function c(O). The left hand side is a Fourier polynomial of

order 2 which implies that c must be a Fourier polynomial of order < 1

since otherwise the right hand side would be a Fourier polynomial of

order > 3. Hence we can write c(O) = aAB + )3AB COS 0 + ’YAB sin 0. The

right hand side is then given by

aABEO +
1
i3ABEA + 1^YABEB + (OABEO + aABEA) COS 0

2 2

+ (’YABEO + 01ABEB) sin 0 + IOABEA 7ABEB cos(20)(2 2

+ (17ABEA + 113ABEB) sin(20).
2 2

A comparison of coefficients gives

L(Eo, Eo) + I(L(EA, EA) + L(EB, EB))
2

aABEO + - 3ABEA + -7ABEB, (3.3.4)
2 2

2L(E0, EA) = )3ABE0 + CVABEA , (3.3.5)

2L(E0, EB) = ’YABEO + CVABEB
, (3.3.6)

L(EA, EA) - L(EB, EB) =  3ABEA -YABEB7 (3.3.7)

L(EA, EB) = I’YABEA + I 3ABEB- (3.3.8)
2 2
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We obtain a linear system of equations for the components L’ (b < c)bc -

of L = L’(bc) (g Wb (9 c
0 Ea. From Equation 3.3.5 we obtain immediately

LB =Of6rBVfO,Aj,OA

LOOA OAB, LA (3.3.9)OA
= -aAB.

2 2

Further, neither OAB nor aAB can depend on B since the left hand sides

of Equations (3.3.9) are independent of EB. Equation 3.3.6 implies in

addition that LB = - aAB. Hence aAB cannot depend on A either. WeOB

will therefore write Ao := aAB and AA 13AB. Equation 3.3.8 implies
Lo = 0 for A  4 B and LC = 0 for pairwise different A, B, C. WeAB AB

A
=

I B
=also obtain LAB  ’YAB and LAB  ’AA. These two equations are

only consistent if ’YAB = AB. Equation 3.3.7 can be used to eliminate

L(EB I EB) in Equation 3.3.4 resulting in

L(Eo, Eo) + L(EA, EA) = CeABEO + IOABEA + 1^YABEB + 1OABEA
2 2 2

7ABEB == AOEO + AAEA.
2

This equation implies LOOO + LAA = Ao which is independent of A. Hence

Lo = Lo for A =h B we can set yo := -Lo B
AA BB AA,

We also have Loo
-LB for B =h A and LA +LA set

A
= LA

,
all coefficientsAA 00 AA

= AA. If we /.t 00

are determined. It is now straightforward to check that La - ja A
) +(be)

-

(b c

/_,agbc. Conversely, this tensor indeed has all the properties listed in the

lemma.

.,M --4TCorollary 3.3.1. Let L(., .): T,,M x .,M be a symmetric ten-

sor such that L(N, N) 11 N for all null vectors N and g(L(v, v), v) = 0

for all vectors v. Then for each g E Q there exists a 1-form A such that

L(v, w) =
I
(/\(v)w + /\(w)v) - g(v, w)1V Vv, w E TM,

2

where /V is defined by A(v) = g(A0, v) for all v E T ,M.

Proof. This follows immediately from Lemma 3.3.6 and the additional

condition g(L(v, v)v) = 0 for all vectors v.

We are now ready to prove the main result of this section.

Proof of Theorem 3.3.1. We will first show that there exists a unique
V E T such that for each representative g E (t there is a one-form W
with

(VVW)
a

= VbabWa + gad(’ (abgdc + acgbd - lydgbc)
2
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+
I

Wd9bc - gd(00c) vbwc. (3.3.10)
2

Recall the formula for A provided by Lemma 3.3-5. Since L’ satisfies
bc

the assumptions of Corollary 3.3.1 there exists a one-form A such that

La(bc) :::: ga(bk) /Nagbc. The property La = 0 implies 0 ga’La(bc)ba

(n + 1) Ab - Ab -1 (n - 1) Ab ,
whence A = 0 and therefore 0. Hence

2

we have

-

I
Aa1 abc

-

2
(19b9ac + 19c9ba - aagbc) bc

I

 Odgbc - gd(b(Pc) + ga(bOc)
2

An application of Lemma 2.6.3 implies that there is a unique V G q3
such that 0 = 0. This proves Equation (3.3.10).

From Equation (3.3.10) we obtain

dd
_

c

Vagbc aagbc - 1 abgdc racgdb

19agbc -
I
Pagcb + 19b9ac - ac9ab)  Ocgab + gc(a(Pb)

2 2

19agbc + 19c9ab - ab9ac (Pb9ac + gb(a(Pc)
2 2

Wagbc-

Hence (M, (t, V) is a Weyl structure and the theorem is proved. 1

3.4 Reduction to the Lorentzian structure

P. 161 1

[I P. 169] There are experimental facts which indicate that a general Weyl struc-

ture has features which have no counterpart in our actual universe. It

seems therefore necessary to specify the geometrical structure of space-

time further.

It is plausible to identify an affine parameterisation (cf. Definition

2.7.4) of an inertial observer with a standard clock carried by the ob-

server. The freedom t  --* at + b corresponds to the freedom to choose the

zero on the time axis and to choose the unit in which time is measured.

An atomic clock roughly works at follows (detail of this mechanism can

be found in textbooks on Quantum mechanics). Each atom has a charac-

teristic minimal energy E which it can absorb. A very short while after

the absorption of such a package of energy the atom will emit a photon
whose frequency v with respect to the rest frame of the atom is given

by E = hv. Since this frequency is characteristic for each sort of atom it

can be used to build a clock.
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In Sect. 1.4.3 we have seen how to calculate E from the world lines

of the atom and the photon in the context of special relativity. Unfortu-

nately, we cannot simply apply this calculation here since the number E

did depend on the Minkowski metric n and not merely on its conformal

class. But it is very suggestive to identify this atomic clock with the

standard clock t given by the affine parameter of the world line of the

atom.

We will now see that this identification gives rise to a global effect

which has not been observed. Let x, y E M, y E 1+ (x) be two events

and consider two atoms of the same kind which are moving from x to

y along different paths -yi: [0) 011 Mi ’Y2: [07 Ce2l --+ M in spacetime

(cf. Fig. 3.4.1). We will assume that they move initially along the same

Y ’Y1 (al) ^/2 (Ce2)

’Y2 ’Y1

Fig. 3.4-1. The world lines from x to y of two

atoms which are initially and finally at rest with
X ’Y1 (0) ^f2 (0) respect to each other

path in spacetime and that their clocks are initially calibrated at x, i.e.,
there is an e > 0 such that  1 (t) =  2 (t) for all t E [0, 6). We will also

assume that just before reaching y they are again moving side by side.

For these observers we obtain

aA V":YA (t)9( A (t) 7  A (t)) aA
 A (t)9) (:YA (t) i  A (t))

10
9( A (t))  A (t))

-,
 ;-

JO 9( A (t) 7  A (t))
-dt

+2

aA g(V’ /A (t) A (t) 7  A (t))
dtfo

9( A (t))  A (t))
aA

( A (t)) dt.
0
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Since the frequencies were initially equal we obtain

In (g( , (a,),  , (a,))) - In (9( 2 (a2) ,  2 (a2)))
- in (g ( l (al),  1 (a,))) - In (g ffi (0),  1 (0)))

+In (g( 2(0), 2(0))) -In (9( 2(Ce2)i 2(Ce2ffl

Let Q be any 2-surface which is bounded by the curves -yl, -y2. An ap-

plication of the theorem of Stokes (Theorem 2.5.5)5 gives

In (g ( , (a1),  , (a1))) In (9 ( 2 (a2),  2 (a2)))

f
0"

w( i (t)) dt _ f012 W( 2 (t))dt
00

== J dW =: -2 F
CQ J Q

Hence the parameterisation of both curves and therefore - by our iden-

tification - the frequencies of both atoms are different at y, even though
they were the same at x. As a consequence, the frequency of an atom

clock would depend of the history of the atoms constituting it. This does

not seem to be the case. Moreover, the spectrum of far away stars is ap-

parently independent of the history of the atoms which constitute these

stars.’ Hence we conclude that dW =: 0.

Postulate 3.4.1 (No second clock effect). The length curvature

F = -

1
dW of spacetime vanishes identically.2

Notice that the justification of Postulate 3.4.1 requires more interpre-
tation than the justification of our other axioms. One may argue that

it is the weakest link in the chain of arguments which leadsto general

relativity.

Corollary 3.4. 1. Assume that Postulates 3.1.1, 3.2.1, 3.2.2, 3.3. 1, and

3.4.1 hold. Then spacetime is a Lorentzian manifold (M, g).

Proof. This follows immediately from Theorem 2.7.2.

We have now arrived at a geometrical structure which gives the frame-

work for a description of space and time. The arguments which lead

to Corollary 3.4.1 may seem so compelling that the reader could ask

herself or himself why we started with Newton’s theory of spacetime

The gist of our argument is that the difference of the frequencies at -Y1 (al) =

’Y2(Ce2) is non-zero. That this is the case for suitable paths -yi, ’Y2 unless W

can be chosen to vanish should be plausible even without appealing to the

theorem of Stokes. It is needed for a strict proof though.
6 This argument does not depend on the identification of atomic clocks with

the affine parameter of their world lines.
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instead of motivating our postulates directly. In fact, from a purely con-

ceptional point of view it is, advantageous to analyze the measurement

of space and time relations and to use this analysis in order to arrive

at a Lorentz structure. This program has been carried out by Ehlers,

Pirani, and Schild (1972) who also arrive at a Weyl structure and reduce

it to a Lorentz structure via Postulate 3.4.1. With our preparation this

article is highly readable and certainly recommended to physicists who

are interested in the operational approach.
We have used a more historic approach for two reasons.

Firstly, most readers are familiar with the classical description of

spacetime (albeit less formalised, perhaps).
Secondly, Newton’s theory is also very compelling on first sight. So

are Galilei’s theory and the special theory of relativity. What is more,

when these theories where still young and generally accepted it was very

difficult to see how to improve them. In fact, most physicists and philoso-

phers would have claimed that these theories are correct in an absolute

way. There is no doubt that the Lorentzian description of spacetime
will not be the last improvement either. It is even a prominent topic of

current research to try to incorporate general relativity into a new gen-

eral quantum theory of spacetime. It is generally believed that this new

theory will be qualitatively very different from the geometrical theory
we have presented here. The reader should recall that we started with

macroscopic properties of rays of light which do not take into account the

quantum nature of light. Also, we have always assumed that space and

time are continuous rather than discrete. Hence there are several points
where our theory of spacetime may prove inadequate. It must also be

said, however, that a conceptionally satisfying theory of quantum gravity
does not yet exist.

Our description of spacetime is much better than previous theories

and to date there is no other theory which describes the global properties [p. 166 1]

of spacetime betten I P. 171
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P.

We have learned that spacetime can be described by a Lorentzian man-

ifold. In this section we will investigate the slightly more general case

of pseudo-Riemannian manifolds in detail. The development of the

theory of spacetime will be continued in Chap. 5 where we motivate

Einstein’s equation, the central equation in general relativity which

links matter to gravitation.
Readers who wish to get to Einstein’s equation quickly may skip

most of Chap. 4. They only need to read Definition 4.2.2 and Sect. 4.3
up to and including corollary 4.3. 1.

For mathematicians, this chapter contains the essentials of (pseu-
do)-Riemannian differential geometry. Almost everything we present
here will be used in the following physically motivated sections.

Prerequisitives of this chapter: Sect. 2.7.1 and Sect. 2.8 (up to but

not including Lemma 2.8.2).

Recall that a pseudo-Riemannian manifold (M, g) consists of an n-dimen-

sional manifold M and a symmetric, everywhere non-degenerate (20)-
tensor field g. We will often denote g by (., .). A pseudo-Riemannian

(M, g) is called a Riemannian manifold (respectively, Lorentzian man-

ifold) if g has signature is (+, . . . , +) (respectively, (-, +, - . . , +)). The

simplest example of a Riemannian manifold is Euclidean Space, (Rn,
d(xl )2 + . . .+ d(xn)2) ,

and the simplest example of a Lorentzian mani-

fold is Minkowski spacetime, (R’, -d(x0)2 + d(xl )2 + ... + d(xn-1)2).
In this book, we are especially interested in Lorentzian manifolds

as mathematical models of spacetime. Riemannian submanifolds (cf.
Sect. 4.4) of codimension I can be thought of as instants of time. They
will play an important r6le when we discuss the initial value problem
in Sect. 5.4. Pseudo-Riemannian manifolds which are neither Lorentzian

nor Riemannian are rarely applied in physics. However, it does not come

at any additional cost to widen the discussion to this more general case.

Unless explicitly stated otherwise all geometrical objects are under-

stood to be derived from the metric and the Levi-Civita connection.

Remark 4. 0. 1. The investigation of hypersurfaces in Euclidean space has

a very long tradition in mathematics and it has led to many important

(mathematical) developments. (Pseudo)-Riemannian manifolds are the

We only collect those facts which are essential to an understanding of Ein-

stein’s equation which will be presented in the next chapter.

ute
M. Kriele: LNPm 59, pp. 171 - 254, 1999© Springer-Verlag Berlin Heidelberg 1999
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natural generalisation of these hypersurfaces and therefore of indepen-
dent interest to mathematicians. While we will not push this angle, read-

ers primarily interested in learning differential geometry should keep in

mind the following example of a Riemannian manifold.

Let M C R’ be a hypersurface and consider for each x E M the

tangent space TxM as a subspace of R’. To be concrete, let t: M ---> R’

be the natural inclusion and identify T,,M with t.TxM C T,(x)R’ Pz R’.

We denote the standard scalar product of R’ by and define the

Riemannian metric g of M by

g(V7 W) :‘ (t*Vl "W)R11

for all vectors v, w E TM.

While this class of examples is rather simple, it is sufficient for vi-

sualising most important features of Riemannian manifolds. Whereas

Euclidean space is trivial in the sense that d(xl)2 + - - - + d(Xn)2 is a

constant tensor field with respect to appropriate coordinates, g is non-

constant in general and the curvature of its Levi-Civita connection does

not vanish.

Example 4. 0. 1. The simplest, non-trivial example is given by the sphere
S2 = fx E R

3
: (Xl)2 + (X2)2 + (X3)2 =: 11 C R3

.
Denote by t: S2  -4 R3,

x f--> x the canonical inclusion. In this case we have T Rn,,M = ly E

(XI Y)R3 = 01. We can parameterise (a dense open subset of) the sphere

using the chart (U, W) where

 Cos 0 Cos 0

W_
1
(01 0) = sin 0 cos 0

. sin 0

Let fEl, E21 be the standard orthonormal basis of R2. From

’9 -1
- cos sin 0

( o-’).Ej -
ao

490 = - sin sin 0

Cos 0

- sin 0 cos 0

= Cos 0 Cos 0

0

we obtain goo = g(ao, ao) = 1, goW = 0, goo = COS2 0. We could now use

the Koszul formula (Equation (2.7.7)) to calculate the Levi-Civita con-

nection and we could determine the Riemann tensor through the formula

given in Theorem 2.8.1. In Sect. 4.4 we will study general submanifolds

and present better techniques for calculating these quantities.

A submanifold of Minkowski space does not necessarily inherit a Lorentz-

ian metric - in fact, the example C,,+ (U) \ jxj shows that a hypersurface
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in Minkowski space may not inherit any pseudo-Riemannian metric. In

contrast to the Riemannian case, it is probably not wise to try gain-

ing intuition for Lorentzian manifolds from studying submanifolds of

Minkowski space. We should instead use the intuition we gained in the

previous chapters. Lorentzian manifolds serve as models for space and

time as a unit - and in this physical way their geometry can be under-

stood best.

Since the metric of a pseudo-Riemannian manifold is everywhere non-

degenerate we have a canonical isomorphism of vectors and one-forms.

Lemma 4.0.1. Let (M, g) be a pseudo-Riemannian manifold. The met-

 ,M  --* T,,*M, v  --> v , where v (w)ric,induces an isomorphism T

g., (v, w) for all W E T,,M.

Proof. This follows immediately from the fact that g is non-degenerate.

.,M. This isomorWe denote the inverse isomorphism by (.)0: T*M  -* T

phism can be naturally extended to tensor fields.

Definition 4.0.1.
.
Let V) E T,,r(T--M). Then we define the completely

covariant tensor V) by

V),(Vl, - - .,v,+,) :-::::! 0(vi, -,Vs, (V,+i) ...... (v,+,)’)

and the completely contravariant tensor 00 by

OW.... I Wr+S) = - - -, (W,)O, w", - - -, r+sl)

The components of V) are often simply denoted by V)j,...jjj
...j, and the

components of 00 by 0" ... i,jl ...j".

The isomorphisms (.)0, (.)’5 are often referred to as "raising and lowering

of indices". This terminology is motivated by their expression in the

abstract index notation. We write (90)ab = gab, (V )a = gabVb =: Va i

and (.0)a = gabWb =:
a

.
The symbols " " and 5" should be easy to

remember since there is an analogous notation in music.

One of the most important inequalities in linear algebra is the Cauchy-

Schwarz inequality for positive definite scalar products (*7’)R",’ It states

that for every pair of vectors v, w the inequality

(V I W)Rn (V 7 V) Rn  (W I W) R’11,

holds. This inequality clearly generalises to Riemannian manifolds. To

us, an analogous inequality for Lorentzian manifolds is much more im-

portant.
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Lemma 4.0.2 (Inverse triangle inequality). Let (M, g) be a Lorentz-

ian manifold and let v, u) be causal vectors. Then the inequality

(v, W VF-(VV)I VR-W*

holds.

Proof. The inequality holds trivially for null vectors. Hence we can as-

sume that both w and v are timelike. There is a vector e I v and a

number a such that w = av + e. This implies (e, e) > 0, 0 < (w, w)
a2 (V7 V) + (e, e) and therefore

(V, W)2= a
2

(V, V)
2

== ((W, W) ’(e, e)) (V, V) > (W, W) (V, V) .

P.

I p. 176

In the rest of this section we prove a somewhat technical lemma which

may be omitted on first reading.

,,M, the n-dimensional "vertical" subspace T,,., T,,M ofFor any u E T

,,M --+ T,,TM, v F-+ v-[,lT,,.TM is given by the image of the map
d
(U + tV)lt=o. We can equip T,,;,,.TM with a pseudo-scalar product byTt

defining  f)[u], (v, w). In general, the push forward of the expo-

nential map fails to be a linear isometry of the spaces Tu.,,TM and TM.

However, if one of the vectors ij[,,], fv[,,j is aligned with u[,,], we have the

following invariance.

Lemma 4.0.3 (GauJ3 lemma). Let x G M, u Cz T,xM \ f01, and  [u],
,M and w E T,,Cu[uj E Tu.T M. If there are v E Ru C T M with,5[,,]

d
(u + tv) I t=0 and fv[u) (u + tw) I t=0, then

Tt dt

(Tx exp (, [u] ), Tx exp (fv [u] (v, w)

Proof. The assertion is a formula which is linear in v[u] and w[,,]. Since

u and v are parallel we can therefore replace v by u in this formula.

Consider the map f : (s, t) expx (t(u + sw)) E M and let

ft T( ,,t)f (,9t) Tt(,,+,,v) expx((u ;sw+ sW)[t(U+SW)j)

f , T(,, t) f (a,) Tt(u+,w) exp., (i_w [t (u+,,,])).

f f
Observe that we have V 9,ft =V c,)tf, for all s since V is torsion free.

The curve t  -* expx(t(u + sw)) is a geodesic, which implies

.

=0

f f

V at Ut, M 17 at ft, f" ) + (f"Vf a, f" f, If7
a, ft
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1 f I f

V a, Ut, ft) = - V 9, (U + 8W, U + sw = (u, W) .

2 2

This equation can be easily integrated yielding (ft, f,) t (u, w). Hence

the assertion follows by setting (s, t) = (0, 1).

4.1 Existence of Lorentzian

and Riemannian manifolds

This section is included for its theoretical interest and can be omitted

on first reading.

Theorem 4.1.1. Every manifold M carries a positive definite metric g.

Proof. Let J(Ua,  0101,,EAJ be a collection of charts which covers M and

If,,,I,EA be a partition of unity subordinate to JU,,I,EA. The bilinear

form
n

 

f, (x)
* (dxl 0 dx1

+ - - - + dx" (D dx9X:=

aEA

is evidently well defined and symmetric. Let j be an index with x G

supp(f,.,) and v E TxM be any non-zero vector. The estimate

n n

(v V) (X) Y. (( (Pc,)*V)j)
2

> fai (X) (((WUj)*V)i)
2

> 0fo,9 

aEA i=1 i=1

implies then that gx is positive definite.

A line field (or line bundle) is a 1-vector subbundle with base manifold

M of the tangent bundle TM. A nowhere vanishing vector field U gen-

erates a line bundle but it is possible to have line bundles which are not

generated by vector fields (cf. the example of a M6bius band).

Theorem 4.1.2. A Manifold M carries a Lorentzian metric if and only

if it admits a (non-oriented) line field 1.

Proof. Let h be a Riemannian metric of M and assume that there exists

a line field 1 on M. Each point X E M has a neighbourhood U such

that for all y E U the line field 1 can be represented by ly = RUy,
where U is a vector field on U. We can assume without loss of generality
that h(U, U) = 1. Then U is determined up to a factor 1. Hence the

(o)-tensor field g := h - 2U5 0 W is globally well defined. We restrict
2

now attention to U again. Let JU2,..., Unj be a completion of U to a

local orthonormal frame with respect to h. That the tensor field g has

signature (-, +, . . . , +) and is therefore a Lorentzian metric follows from

g(Ui, Uj) = h(Uj, Uj) = 6ij, g(U, Uj) = 0, g(U, U) = I - 2 = -1,
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Conversely, assume that M admits a Lorentzian metric g and let h

be a Riemannian metric on M. Then at each point x E M we have a

linear map A: TxM ---> TxM defined by A - ikh *k where we use the
I =9 3 1

Lorentzian metric g to raise or lower indices. The tensor A is symmetric
with respect to h since

h(v, Aw) = hkivkA. wj = hkig"hj,Vkwj = hjlAlkvkwj = h(w, Av)i

for all vectors v, w. Hence there is an h-orthonormal basis of eigenvectors
of A. Since g has signature (- 1, 1, . . . , 1) the linear map has one negative
and n - I positive eigenvalues. It follows that a each point x there is a

uniquely determined 1-dimensional subspace 1,, of T,,M which is spanned
by the eigenvectors corresponding to the negative eigenvalue. Clearly, 1

defines a line field of M.

Corollary 4.1.1. The Sphere S2 = fx E R’ : (Xl)2+(X2)2+(X3)2
does not admit a Lorentzian metric.

Proof.
If there is a Lorentzian metric on S2 then there is also a line

field 1 on S2. Let h be a Riemannian metric. Then there are at each

X E S2 exactly two vectors Ux E 1x with h(Ux, Ux) = 1. We will

now construct a non-vanishing vector field V on S2. At x we choose

V = U
,.

and consider all great circles through x. These great circles

cover all of S2 and each point but fxj is intersected by exactly one

such great circle. The points x and -x are intersected by all great circles.

We define now V on S2 \ f -xj as follows. Along each great circle -Y

we let V, (t) E f U, (t),
-Uy(t) I be uniquely determined vector such that

t 1-4 Uy(t) is smooth. These vector fields along great circles have each a

limit vector in I U_x,
-U_

x 1. Let now - j : [0, 7r] _4 S2, _/2: [0, 7r] _- S2 be

two great arcs from x to -x. Since we can smoothly rotate one arc into

the other and V depends smoothly on parameters it is clear that both

limits limt-, Vy,(t) G fU-,,, -U_xJ and limt.., V.,,(t) E fU__ X’ -U_Xj
must coincide. But this implies that all arcs have the same limit at I-xl
and that therefore we have defined a continuous, non-vanishing vector

field V. This contradicts Theorem 2.5.6 and therefore there cannot be a

Lorentzian metric on S2. I

We will see in Proposition 8.1.1 that there are other reasons why one

may want to discard compact models of spacetime.

4.2 The volume form and the Hodge star operator
p. 174 1

In Sect. 2.5.4 we have seen that for a general manifold without addi-
U P. 3-791

tional structures it is possible it to define an integration of n-forms
but not an integration offunctions. In an oriented pseudo-Riemannian
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manifold there is a canonical n-form, the volume form. This allows

us to define the integral over a function (cf. Definition 4.2-2).
The Hodge star operator is a canonical isomorphism of p-forms

and n - p forms. It can be used to put Maxwell’s Equations which

describe electromagnetism and ligh’t (cf. Sect. 5.2.3) into an espe-

cially simple form. A further motivation is given in the introduction

to Sect. 2.5.1.

The discussion of the Hodge star operator can be omitted on first

reading and will not be needed in the rest Of this book.

This section draws on Sect. 2.5

The isomorphisms (cf. Definition 4.0.1) induce a pseudo-scalar prod-

uct on T,M.

Lemma 4.2. 1. The bilinear form

g[r]: Tr(TxM) X T,(TxM) R,
S

crr+sC11 +’0

is a non-degenerate, symmetric bilinear form. The pseudo-scalar product

g[r] is positive definite if g is positive definite.
2

S

Proof. For 0, 0 G TI (TxM) we calculate

0 )ai ... a + a d
.. d, a,,+ic.,+,

... ga,,+,.c,,+,.""’
= V)C1 ... a,, Obl’ j.’.b,,+,.g(V b, ... b ’+,, .+1 ... _+’. ’+ -

X gbid, ... 9b,, d  ,

= V)al ... a,a,,+i ... a,,+,.Odl ... d,, d,,+
gbid, ... gb ,+,-d ,+,--

It follows that the total contraction of this tensor is symmetric in its

constituents Oal ... a,, a,, + i... a,,+,. and Od, ... d.,d,+, ... ds+,.. Let

fel.... i en, W1.... I
Wnj

be a pair of dual orthonormal bases and 0 c T,,r(TxM). Since (w )O = ej
and (ej) = w’ (the sign depending on the signature and i) we have

8] (0, eai 0 ea., (9 W
bi

& n,.) (6al, ea,,, Wbl’..., Wn,.)g[r

which in turn implies that g[r] is non-degenerate. The assertion for Rie-
s

mannian metrics follows from

8
V)) V*ai .... 7 ea,,, Wbl’..., Wn,,)g[r

al ... a,,

b b_
CI’--CS’

di
’... ’d,

di d,
X Cec...... e," W ’. ..7

W )6alel ... 6a,, c,, 41 di ... 6b,d, -

2 The converse is not true since [0 ] is always definite since it is a non-9 n

vanishing bilinear form on a one-dimensional space.
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The metric measures not only the length and the angle of vectors but

also the volume of a parallel-epiped spanned by a collection of linearly

independent vectors,

Lemma 4.2.2. Let (M, g) be a -pseudo-Riemannian manifold and x E

M. Then x has a neighbourhood U such that there exist exactly two n-

forms p, -/-t with jg[O](yjt)j = n!. Furthermore, if fEj,...,Ej is
n

an orthonormal frame then M., (El, En) c=

Proof The first claim follows from the fact that An ,,M) is a 1-dimensio-

nal vector space and g[(]x a non-vanishing bilinear form on it.
n

Let E,I be an orthonormal frame and jw n I be the

dual frame. Then the tensor fields  o = wl 0 Wn satisfy

19 In’] ( O,  0) I = I
-

Hence M = wl A ... A Wn = n! alt (W) satisfies Ig [0 ] (/,t, /-t) I = n!. If
n

El, . . . ,
En I is any other orthonormal frame and A E Tl’(U) is defined

by Ej = AEj = A’j Ej then M (E,,..., En) = det(A. )/_t (E,,..., E,) =

det(A3 ). The second claim follows since the determinant of a linear map

which transforms orthonormal bases into orthonormal bases is always

equal to either 1 or -1. 1

The preceding lemma implies (by continuity) that on a connected pseudo-
Riemannian manifold there are at most 2 n-forms /,t which satisfy the

normalisation condition Ig [0 ] (p, ) I = n!. Evidently, this is the case
n

if and only if there exists a non-vanishing n-form on M, i.e., if M is

orientable.

Definition 4.2.1. If (M, g) is an oriented pseudo-Riemannian manifold
with orientation 0 then the volume form is the unique n-form pm c 0

with Ig [0 ] (ym, ym) I = 1. If U C M is an open set with compact closure
n

U
AM.3we define the volume of U by vol(U) = f?

The following definition reduces to the volume integral in Euclidean ge-

ometry

Definition 4.2.2. Let (M, g) be an oriented pseudo-Riemannian Mani-

fold with volume form p. Then the Integral of a function f over an open

U
f/-t.4set U is defined by fj

3 Readers who have omitted Sect. 2.5 can replace fu pm by

fl(U) V/_j_det((gij)jj)dx’ ... dXn’ where W is chart map whose domain

contains U.
4 As in the preceding footnote, f, fp may be replaced by f, pm by fW(U) f 0

(p-’ Vj-det-((gij)ij)dx’ . . .
dXn.
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Lemma 4.2.3. Let (M, g) be an oriented pseudo-Riemannian manifold

and (x’, . . . , xn) a positively oriented coordinate system. Then the coor-

dinate expression of pm is given by

I-tm =  Jdet ((gij)1<ij: ,n) Jdx1 A ... A dxn.

Proof. If (yl,...,yn) is another positively oriented coordinate system

then the number det((ax, is positive. We denote the metric com-’97)
a,

b)
ponents with respect to (y 1, . yn) by jab and obtain

gxc yXd
gab J a b gcd

which in turn implies

2

 det ((jab)l<a b<n) det
9xa )b ) det ((jab)l<a,b<n)

, ay 1<a,b<n

- det
9xa

b )((  d_et ((Jab)1:5ab<n
ay I<a,b<n

Hence the n-form given by V-1det_((gii)1<ii:5n) 1dx’ A ... A dx’ for any

positively oriented coordinate system is globally well defined. At x we can

choose a positively coordinate system with gab(X) =   Jab- Calculating

 J det_((gij),<ij:5,,) I dxIA ... A dXn

in this coordinate system implies that this n-form coincides with pm. I

Definition 4.2.3. Let W E T,’(M) be a tensor field on (M, g). Then the

divergence of  o, div ( p), is a tensor field in T,-
1 (M) and given by

divW(A’,..., Ar-1, V, .... I VS)
n

E (VEaW) (0a, Al’...
,
Ar-1, vi, ..., V,

a=1

where JE1,..., En; 01
.... Onj is (any) pair of dual, orthonormal bases.

This definition is independent of the chosen orthonormal basis - a fact

ii.... -l(x) =which can be seen best in coordinates: the equation div( o)’, i.

Vk(P (X) is clearly invariant and agrees with the definition above [p. 176 1]

if the GauBian frame is chosen to be orthonormal at x. I p. 137
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Lemma 4.2.4. Let (M, g) be an oriented pseudo-Riemannian manifold
and U be a vector field on M. Then the formula

_CUpm = (div(U))[zm

holds.

Proof. Let x E M and choose normal coordinates centred at x. Since the

Christoffel symbols of V vanish at x we have

Va = aa and 0,, ( ) = 0.

Hence using Lemma 2.5.3 we obtain at x

XUpM =.CU (rdet (Fgab)l<ab<n)dxl A ... A dxn

= (U * Fdet_(F(jab)I<ab<n)) dxIA ... A dXn

+  det ((jab),: ab: ,,)XU (dx’ A ... A dXn

=  det ((jab) 1 < a,b<n) 1: dx1
A ... A.CUdXa A ... A dXn

a=1

n

Edxl A ... A d(U J dXa) A ... A dXn

a=1

n

Edxl A ... A dUa A ... A dXn

a=1

n

qUa
1 Xnrdet1((jab)71 dx A ... Ad<a,b-<n)  7 qxa:5n)

a=1

n

IqUa ) 4m. = (div(U)),4m.1:
qxa

a=1

Since x was arbitrary we have XUpm = (div(U))p everywhere. I

Corollary 4.2.1 (Theorem of GauB). Let (M, g) be an oriented pseu-

do-Riemannian manifold, U be a vector field on M, and V C M an open

subset of M with smooth boundary W Assume that 9V is a smooth sub-

mani Id and that there is a vector field n along aV with g(v, n) = 0 for
all v E TaV and g (n, n) = 77 E 1, 11. Then we have

JV div(U)pm =,q JaV(n, U) pav.
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Proof Lemmas 4.2.4 and 2.5.3 imply (div(U))I-tm =: XUpm =: U-Jdl-tm +

d(U J pm) =: d(U J pm). Denote by t: OV ---> M, x F-4 x the canonical

inclusion. Then we have t* (U J pm) = 77  U, n) n J Mm = q (U, n) pav.

Hence the Theorem of Stokes (Theorem 2.5.5) implies

IV div(U)[tm = fV d(U Jpm) = q fav (n, U) pav.

We will now introduce a canonical isomorphism between the space of p-

-P(Tforms AP(TxM) and the space of (n-p)-forms An xM). See Sect. 2.5.1

for the motivation of this isomorphism.

Proposition 4.2.1. Let (M, g) be an oriented’pseudo-Riemannian man-

ifold with volume form p. For each p E f0, . . . , nj there is a unique linear

isomorphism

.,M) -- A’-P(TxM), 0 i--> *0*: AP (7:

such that gI0 P] (**, 0) = g [’ 1 (0 A 0, p) for all V
n- n

9 E AP (TxM), 0 E

An-p(TXM).

The operator * is called the Hodge star operator and the isomorphism
induced by * the Hodge star isomorphism.

Proof. Let jej,...’ enI, Wnj be a dual pair of orthonormal bases

and qj = (ei, ej). Then the set jWai A ... A wa,,-p Tai< ... <a,,-,
is an or-

thonormal basis of An-p(TxM) with

g[O _P] (Wai A wa,,-p, U)bi A ... A Wb,,-p
n

) = N, Jai bi
... ?7a,,

- ,
Ja,,

- 1, b,,, - 1, ;

where we have assumed a, < ... < an-P, bi < ... < bn-p* We can

therefore write

E *O(eai, e-a,,-,, )Wal A... A Wa,,-,,

ai< ... <a,,,-,,

g [0 _Pj (*0, Wal A ... Awan-p)
n

ai< ... <a,,-,

X 77al ’*’77a,,-,, Ujai A ... Awan-7,

g[O] (V) A Wal A ... A wa,,-,,,
n

ai< ... <an-1,

X 77ai... ?7a,-,, Wal A ... A wan-,,.

The last formula proves that *?p is uniquely defined by the defining
property of *. Further, our explicit basis representation shows that *0
exists. Since [0

n9 n-P] g[O] (0 A 0, /_t) is an invariant equation, our

representation of *0 does not depend on the chosen basis. I
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Corollary 4.2.2. Let 0 E AP (T, 1, Wnj be a,M) and en

pair of orthonormal dual bases. Writing 77i := (ei, ej) we have

g[O ] (OAWai A ... Au)a,,-,, [077ai ... ?7a,,, _’Wai A ... Awa,,-,.
n

a,< ... <a,,,-,

Proposition 4.2.2. The operator *: AP(T, -P(T,,M) -- An
 ,M) is an

isometry for even index v and an anti-isometry for odd index v.

Proof. Let fej,...’ enj, Wnj be a pair of orthonormal dual bases

and assume a, < ... < ap, ap+l < ... < an, bi < ... < bp, bp+l < ... <

bn, fa,.... anI = Jbi,...’ bn1 = 11, - - -, nj. By Corollary 4.2.2 we have

*U)ai A ... A Wa, = sign(al,..., an)Tla,+l ... na,, wa,+, A ... A wa,,,

and therefore

g[o_p](*Wai A ... A wa,,,
b

n
*w

1 A ... Aw

sign(al,..., an)sign(bl,..., bn)?7a,+,
0

_P] (Wap+1 A ... A wa,,,, Wbp+l A ... A Wb,,X gIn

=,q[O_P](Wap+l A ... A U)a,,, bp+ Wb,,)n

1 A A

O_P](WaT,+, A ... A Wa,,, Wbp+l A ... A Wb,,,where we have used that 9 In
vanishes unless ap+ 1 = bp+1, . . . , an = bn -

Since

g[OI(Wal A ... A Waj,’ Wbi A ... A Wbp) = qaj ... 77ap Jai bi 6apbpP

and (by our selection and ordering of indices)

6ap+lbp+l *’* 6a,,bn= Jaibj Japb,,

holds, we have

O_pl(*Wal A ... A Wa,,,, *,b b,,)gIn 1 A ... A w

?7ap+l
9

0 Wal A ... A Wap, U)b’ A ... A wbp
Tlai

(_j)vg[Oj(Waj A ... A Wa,,, Wbi A ... A Wbp
P

Lemma 4.2.5. Let (M, g) be an oriented pseudo-Riemannian manifold
of index v with volume form y. Then

N *1 = it, *A = (-’)’;
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9 [on-,,] (*0, 0) (n-P)-g [0] (0, *V)) for all 0 C- AV (T.,M), 0 E

An-p(T,,M);
(iii) 0 A *0 = g [0 ] (0, 0) y for all 0, ?p E AV (T M);

P

(iv) 0 = (_1 )v+p(n-p)O.

Proof (i): By definition we have 9 [on] (*I, A) = 9 [on] (1 Ay, /-t) = 9 [on]
and the first claim follows since g [I] is non-degenerate and An (T,,M) is a

n

one dimensional vector space. The other claim can be proved analogously
but it also follows from (iv).

(ii): Using Lemma 2.3.8 we can directly calculate

g[O_P](*O,,O) = g[OI(O AO,tL) = (_I)p(n-p)g[O](,o A 0,/,t)n n n

= (_j)P(n-P)g[O_
n v] (*0, 0)

(iii): From Proposition 4.2.2 we get

0gln’](O A *040 =9[n-p1(*O,*V)) = (-1)"401(0,0-

The assertion follows now from 9 n

(iv): For every AP(TM) we have

9 101 (* * 0, 0) = 9 [on] (*0 A 0, A)
P

= g [0 1 ((_ I)P(n-P) 0 A *0, /_t)
n

n P

(_l)p(n-p) (_I)vg[Ol (0, 0),
P

whence the claim follows from the non-degeneracy of g[PO]

Lemma 4.2.6. Let (M, g) be an oriented pseudo-Riemannian manifold
and w E S?P (M). Then we have div(w) = (- 1)P- I

* d * w.

Proof. Let x E M and choose a normal coordinate system centered

at x such that jai ......Onj is orthonormal at x. Since the equation to

be proved is linear in w we can assume without loss of generality that

w = fdx" A ... A dx’p where ii < ... < ip. We obtain at x

*W = fsign(il,..., in) Wp+i ... ?7i,,dx"’+’ A...... dx -.

Since the first derivative of the metric components at x vanish we can

ignore them in the calculation of d * w and get

n

(d * w)x = 1: ajfsign(ii, . in)?7i,+l ... ?li,, dxj A dx ,,+ I A ... A dx ,,

j=1
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Let  E I - 1, 11 be the number which satisfies dxj A dx -+ I A ... A dx -

 dx-’71 A ... A dx3- where jp < ... < j, and let u[j) be the permuta-
tion of i 1, . . . , iP which moves j into the last entry and which leaves the

relative order of all other entries fixed. Then we get sign(jj, . . - Jn)
sign(ij,...’ip) sign(u[j]). We get then

*(dxl A dxl,’+, A ... A dx"’)

=  sign(ii, , in)’qj, .,qj,-, dxjI A
......

dxjP-1

= sign(ii i - in)sign(a[j]),qj, .,qjp-, dxjI A...... dxjp-l

= sign(il,..., i,,)sign(a[j]),qj, 77jp-,

x Oj _j (dxj A dx" A ... A dxj A ... A dx"’

= (-I)P-1sign(ij’. - -, in)77jl ... T/j, - I

x aj _j (dxj A dx" A ... A dx’,,

Hence we get

n

(*d * w)x = E ajfsign(i 1, in) ?7i,+ i... 77i"’ (- I)P-
1

j=1

x sign(ij.... ) in)77ji ... 77jp - 1 19i J (dxj A dx" A ... A dx’P

n

= E,9jf77i (- 1)P_
1
ai J (dxj A dx" A ... A dx’P

j=1

(-1)P-1div(w),,.

4.3 Curvature of pseudo-Riemannian manifolds

The material presented in this section up to and including Corollary
p. 189]

4.3.1 is fundamental for Sect, 5 on relativity.
The rest of this section can be omitted on first reading.

The Riemann (or curvature) tensor R(U, V)W = VUVVW-17VVUW-
V[U, W]

W of a connection has been introduced geometrically in Sect. 2.8.

Since it arises in such a natural way, one would suspect that the Riemarm

tensor of the Levi-Civita connection plays also an important r6le in the

physical theory of spacetime. This is indeed so as we will see in Chap. 5.

Here we will merely investigate some of its mathematical properties.
The Riemann tensor satisfies a collection of useful algebraic identities.
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Proposition 4.3. 1. Let (M, g) be a pseudo-Riemannian manifold, x E

M, and t,u,v,w G TxM. Then

R(u, v) = -R(v, u),

R(u, v)w + R(v, w)u + R(w, u)v = 0 (First Bianchi Identity),

(R(u, v)w, t) = - (R(u, v)t, w) ,

(R(u, v)w, t) = (R(w, t)u, v) .

Proof. The first identity is clear from the definition of the curvature

tensor. The second identity is just the first Bianchi identity which holds

for any torsion-free connection (cf. Lemma 2.8.1).
Since

(R(u, v) (w + t), w + t)

= (R(u, v)w, w) + (R(u, v)w, t) + (R(u, v)t, w) + (R(u, v)t, t) ,

the third identity is proved once we have shown that (R(u, v)w, w) = 0

for all  vectors u, v, w Cz T,,M. We can assume that there are vector

fields U, V, W which are linear combinations of Gaufflan vector fields

w. Then wewith constant coefficients and satisfy U., = u, V. V, W

have [U, V] = 0 and calculate

(R(u, v)w, w) = (VUVVW, W) -  VVVW, W)
= VU (’7VW’ W) -  VVW’Vuw)
- VV (VUW, W) +  VUW’Vvw)

= VU (’7VW’ W) - ’7V (VUW, W)
I
U 0 V 0 (W, W) -

I
V - U - (W, W)

2 2

= 0,

where in the last equality we have used that the vector fields have con-

stant coefficients.

The first Bianchi identity implies

0 = 0 + 0 + 0 + 0 =

1 H 2 3

(R(u, v)w, t) + (R(v, w)u, t) + (R(w, u)v, t)

4(-) 1 H 5

  R(t, u)v, w) +  R(u, v)t, w) + (R(v, t)u, w)
6 4 3

 (R(w, t)u, v) + (R(t, u)w, v) + (R(u, w)t, v)
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2 6 5

+ (R(v, w)t, u) + (R(w, t)v, u) + (R(t, v)w, u)
= 2 (R(w, u)v, t) + 2 (R(v, t)u, w)

Here we have used the first and third identity to show that the (-) terms

cancel and the (+) terms are equal. I

Recall that by taking the trace we can construct a (’) tensor Ric from
2

the curvature tensor. In the pseudo-Riemannian case we can contract

Ric with the metric to obtain a function.

Definition 4.3.1. Let (M, g) be a pseudo-Riemannian manifold. Then

the function Scal := tr(Ric) == gabRicab is called the scalar curvature of
9.

The second Bianchi identity (Lemma 2.8.1) has the following conse-

quence which will be of importance in Sect. 5.3.

Lemma 4.3.1. Let (M, g) be a pseudo-Riemannian manifold. Then

I
div(Ric - -Scalg) = 0.

2

Proof. Rom the second Bianchi identity we infer

0 =

n

,a ((VEaR)(u,v)w+(V R)(E,,,u)w+(V R)(v,Ea)wE V U

a=1

div(R) (u, v)w + VvRic(u, w) - VuRic(v, w),

where we have used the property Vg = 0 of the Levi-Civita connection.

Replacing v and w with a contraction gives 0 = 2div(Ric)(u) - VuScal.
I

Proposition 4.3-2. Let (M, g) be a pseudo-Riemannian manifold and

let (X11 ... Ixn ) be normal coordinates centred at xO E M. In these coor-

dinates, the metric tensor g satisfies

gab(x) = gab(XO) - IRacbd(XO)XcXd +00Xc 12)
3

Proof Since (xl.... Ixn ) are normal coordinates centred at xo The Chris-

toffel symbols satisfy r. (xo) = 0. The Koszul formula (2.7.7) implies
that

1,3 29" Oigij +,9jgil - algij)
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Hence we obtain

2(gklF + gkiFiki) : : aiglj + ajgil - 019ij + 1919ij + 19jgil - 19iglj = 2ajgil
U 3

which implies that the first partial derivatives of the metric components

vanish at x0. It follows immediately that then also all 9,,gbc vanish at

x0. At x0 we can calculate for the Riemann tensor

a 19d) 19b)
a

R
bcd (R(a,

)a(Vjqc(F dai) - VIOPr c19’)
a a

lubcd - 19dFb(c

1
gae (49cabged + 19cad9be - c9c,9egbd - 190bgec - ’9d’9cgb,- + adl9egbc

2

1
gae (acl9bged - acaegbd - adabgec + adaegbc) (4.3.1)

2

We will now show that 490bgcd == acadgab at xo. Recall that in normal

coordinates centred at x0 all rays t --> (txl.... tx’) which pass through
a (tX)Xbx’ = 0 for all x = (xl.... xn)x0 are geodesics. Hence we get rb(c

small enough. This implies

a
e b

0
axd

(29aeFbc(tX)X XC)

ad ((ab9ac(tX) + acgba(ft) - 19agbc(ft)) XbxC)
,9x

t (adabgac(ft) + 19dacgba(ft) - adl9agbc(ft)) XbXc

+ 2 (19dgac(ft) + 19cgda(ft) - aagdc(ft)) Xc-

Observe that 19dgac(O) = 0 and that therefore

lim 119dgac(ft) = d(’9d9ac(0))(X) = 19e’9d9ac(0)Xe-
t_0 t

Hence dividing the equation above by t and taking the limit t 0 we

get

0 = (190bgac(0) + 19d19c9ba(0) - adaagbc(O)) XbXc

+ 2 (490dgac(0) + 1909cgda(0) - a0agdc(0)) XcXe.

= Xbxc(4,9bC9d9ar_(0) - adaagbc(O) + 2abacgda(O) - 2abaa9dc(0))-

Contracting this equation with x
d
we obtain

0 = (2190dgac(0) - adaa9bc(0))Xbxcxd

Since (xl.... IXn) is arbitrary (for small enough values) this equation

implies that Gabcd := 219(d19bgJa1c)(0) - a(dalal9bc)(0) == 0. We obtain
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0 Gabcd + Gbcad + Gcabd

I

(2adabgac(O) - adl9agbc(0) + 2abacgad(O) - abaagcd(O)
3

+ 209c’Odgab(O) - acaagdb(O))
1

+ - (2adacgba (0)
3

- adabgca(O) + 2acaagbd(O) - C9cabgad (0)

+ 2a,,adgbc(O) - lyaabgdc(O))
I

+ - (2190agcb (0)
3

- ad’Ocgab (0) + 2a,,abgcd (0) - aaacgbd (0)

+ 2ab19dgca(0) - abacgda(O))

(3adabgac(O) + 3ad19agbc(0) + 3acadgab(O))
3

adaagbc(O) + adabgca(O) + 19dacgab(0)- (4.3.2)

This last equation implies now

0 = Gdbea

1

(2aaabgdc(O) - aa’9dgbc(O) + 2abacgda(O) - Nadgca(0)
3

+ 2acaagdb(O) - acadgab(O))

= 2(OcAgde(O) + 19bacgda(0) + acaagdb(O)) -

3

We interchange b and d in this equation and get Oaadgbc (0) +adacgba (0) +
19caagbd(0) = 0. A comparison with Equation (4.3.2) gives 19caagbd(0)
ad’90ca(0) which is equivalent to our assertion 190bgcd = aclodg,,b-

It follows that Equation (4.3.1) implies

a
== gae (0)R

bcd (0) (acabged(O) - acaegbd(O))
and therefore

Racbd(O) + Radbc(0) = 190cgad(0) - a0agcd(0) + 190dgac(0) -,90agdc(0)
= a0cgad(0) + 190dgac(0) - 19b0agcd(0)
= -3,9baagcd(O)i

where we have used Equation (4.3.2). The assertion of the proposition
follows now from a Taylor expansion Of gab(x) around the point xo. I

Corollary 4.3. 1. Let A be a tensor field which is pointwise defined as

an algebraic expression of g and its first two derivatives. Then A is an

algebraic expression of g and the Riemann tensor R.
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Proof. Proposition 4.3.2 implies that any tensor field A which is a point-
wise invariant function of g and its first two derivatives only depends on

g and R. I F[5pTT1W47j]
I I p. 2091

For 2-dimensional manifolds, the Riemann tensor reduces to a function, a

much simpler geometric quantity. To see this, let I e- I, e2 I be an orthonor-

mal basis of T’M. Since (R(., .)., -) is anti-symmetric in the first two and

in the second two entries the expression (R(ei, e2)e-2; ei) does not depend
on the chosen orthonormal basis and defines a function K: M -4 R. It

is easy to see that this function describes the curvature tensor uniquely.

(For explicit formulas cf. Sect. 4.3.1)
For higher dimensional pseudo-Riemannian manifolds such a simple

relationship does not exist. However, it is possible to define a function

K which maps the space of non-degenerate 2-dimensional subspaces of

T’M into the real numbers.

Let

Gnondeg(TM) = fspanfu,,,v,,l : Ux Vvx,9jsPan u_v,,,j is non-degeneratel2

be the set of all two-dimensional subspaces in TM which are either

spacelike or timelike.

Definition 4.3.2. The function

K: Gnondeg(TM)i--->R, spanjux,vxjt-->
- (R(ux, vx)ux, vx)

2

 UX, UX) (VX’ VX) _ (Ux, Vx)
2

is called the sectional curvature of M.

Observe that this expression is well defined since the denominator does

not vanish for any 17 C G
nondeg(TM) and both the numerator and the
2

denominator transform by a factor det(A)2 under a change of basis fix

2Vx, fj. ’ux +A2VX.Al’ux + A X
= A21 1 2

Those pseudo-Riemannian manifolds for which the sectional curva-

ture reduces to a function on M should be especially interesting.

Proposition 4.3.3. Let (M, g) be a pseudo-Riemannian manifold and

x c M. If the sectional curvature satisfies K(Hx) =: K(flx) for all

I-T, fIx E TxM then there exists a number c C- R with Rx (u, v)w
c ((v, w) u - (u, w) v) for all u, v, w E TxM.

Proof. Assume that K(Hx) does not depend on the choice of plane in

TxM. Then the definition of the sectional curvature implies that given
an orthonormal basis fel, - - -, enf we have

(R(ei, ej)ej, ej) = c ( ej, ej) (ej, ej) _ (ei, ej)2)
for some constant c. From the tensorial property of  R(-, we con-

clude that
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(R(u, v)v, u) = C ((Uj U) (V, V) _ (U, V)2

for allu,v ET,,M. For every w E T.,M, we obtain

0 = (R(u + w, v)v, u + w) - c: ( u + w, u + w) (v, v) -  U + W, V)2

= (R(u, v)v, u) + (R(w, v)v, u) + (R(u, v)v, w) + (R(w, v)v, w)

c( (u, u) (v, v) + 2 (u, w) (v, v) + (w, w)  v, v)

(U, V)2 - 2 (u, v) (w, v) _ (V7W)2)
= 2 (R(u, v)v, w) + c( (u, u) (v, v) _ (U, V)2 + (W, W) (V, V) _ (W, V)2
- (u, u) (v, v) - 2 (u, w) (v, v) - (w, w) (v, v)

+ (U, V)2 + 2 (u, v) (w, v) + (V, W)2
2  R(u, v)v - c((v, v) u - (u, v) v), w)

which implies R(u, v)v = c((v, v) u - (u, v) v) for all U, v E T.,M. We can

now polarise again and get

0 = R(u, v + w)(v + w) - c((v + w, v + w) u -  u,v + w) (v + w))
= R(u, v)v - c((v, v) u - (u, v) v) + R(u, v)w - c((v, w) u - (u, w) v)

+ R(u, w)v - c((w, v) u, - (v, u) w) + R(u, w)w
- C((w, W) U - (W, U) W)

R(u, v)w - c((v, w) u - (u, w) v) + R(u, w)v - c((w, v) u, - (v, u) w).

This implies R(u, v)w - c( v, w) u - (u, w) v) = R(w, u)v - c( u, v) w -

(w, v) u) for all u, v, W G T,,M,i.e the expression R(u, v)w - c((v, w) u -

(u, w) v) is invariant with respect to cyclic permutation. Since the cyclic
R(u, v)w + R(w, u)v + R(v, w),, vanishes (cf. Proposition 4.3.1) and

(u, W) v - (v, W) U +  V, U) W - (u, V) W + (W, V) U - (W, U) v = 0,

the cyclic sum of R(u, v)w - c((v, w) u - (u, w) v) gives 0 = 3 (R(u, v)w -
C((.V, W) u - (u, W) v)) - I

Proposition 4.3.4 (Lemma of Schur). If dim(M)  ! 3 and the sec-

tional curvature K: Gnondeg(TM)  -* R reduces to a function on M then2

it is constant.

Proof. Proposition 4.3.3 implies that there exists a function x  --+ c(x)
with R,, (u, v)w = c(x) ((v, w) u -  u, w) v) for all u, v, w E T

,,
M. Let

U, V, W be vector fields whose covariant derivatives vanish at x and which

satisfy U., = u, V v, Wx = w. Then we obtain for any vector t E TM

(VtR) (u, v)w = dc(t) ( v, w) u - (u, w) v).
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Hence the second Bianchi identity (Lemma 2.8.1) implies

0 = dc(t) ((v, w) u -  u, w) v) + dc(v) ((u, w) t - (t, w) u)

+ dc(u) ((t, w) v - (v, w) t) .

Let u be a vector which is not lightlike and w =h 0 be orthogonal to u.

We can choose t = w and v to be orthogonal to w. Since dim(M) > 3

we can also assume that u, v, w are linearly independent. The equation

above reduces then to

0 dc(v)u + dc(u)v) (w, w) .

which in turn implies dc(u) = 0. Hence dc vanishes on all vectors which

are not lightlike and therefore must vanish identically. I

Observe that the preceding proposition is false for two-dimensional pseu-

do-Riemannian manifolds.

Proposition 4.3.4 motivates the following definition.

Definition 4.3.3. A pseudo-Riemannian manifold (M, g) has constant

curvature if the sectional curvature K: Gnondeg(TM)  -4 R is constant.
2

In Proposition 4.5.2 below we will locally classify all pseudo-Riemannian
manifolds of constant curvature.

4.3.1 2-dimensional pseudo-Riemannian manifolds

We collect formulas for the Levi-Civita connection and the curvature

tensor of 2-dimensional pseudo-Riemannian manifolds. These formu-
las will be used in Sect. 7.4.

2-dimensional pseudo-Riemannian manifolds are the lowest dimensional

pseudo-Riemannian manifolds which are not trivial.

Let  71 1 772 E f - 1, 11 and let fEl, E21 be an orthonormal frame with

g(El, Ej) = qj, g(El, E2) = 0, g(El, Ej) = n2. By Corollary 2.4.2

there are coordinates (t, q) and functions A(t, q), v(t, q) such that El

e-
v (t, q) 0t and E2 = e-

A (t, q) 19q.

Proposition 4.3.5. Let (M, g) be a 2-dimensional pseudo-Riemannian

manifold. Then [El,E2] = dv(E2)EI - dA(Ej)E2 and the Levi-Civita

connection is given by

’7E,El = - 71772dv(E2)E2, ’7E1E2 = dv(E2)EI,

VE2El = dA(El)E27 VE2E2 = -771772dA(El)El.

The curvature is completely determined by the scalar curvature Seal,
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R(Ej,E2)Ej=-22ScalE2, R(Ej,E2)E2=2IScalEj,
2 2

Ric
1
Scalg, K(TM) Scal,

2 2

where

Scal = -2 (77, (El 9 E, * A + (dA(Ej ))2) + 772 (E2 * E2v + (dv(E2 ))2) ) -

Pro0f. We calculate first the commutator of the vector field El, E2, Using
the ordinary derivative of R2with respect to the coordinates (t, q).

[El, E2] = D(e-A,9q)(e-’at) - D(e-’at)(e-Ai9q)
- -e-’e-, dA(at)aq + e-e-ADaq(,9t) + e-’e-Adv(aq)c)t
- e-’e-ADat(aq)

=0

A-dA(EI)E2 + dv(E2)El - e-’e- [0t, Oq]

Our formulas for the Levi-Civita connection follow directly from

 ’7E, El, El ) = 2
El 9,qj = 0,

 ’7E2El, El ) = 2
E2 0 771 = 0

1

 ’7E, E2, E2 ) = 2
El * 772 = 0

7

 ’7E2E"2) =

2
E2 ’6 772 0)

 ’7EjE2 , E, ) =  ’7E1E2 17E2El, E,

= (dv(E2)El - dA(Ej)E2, Ej = ?jjdv(E2)i

 ’7E,Ej, E2)  Ej,7E,E2) = -Tlldv(E2))

VE2El, E2  ’7E, E2 - ’7E2El, E2 )
(dv(E2)El - dA(Ej)E2, E2) = 772dA(El)E2

 ’7E2E2, Ej) (E2, VE2Ej) = -772dA(El)

The curvature can now be calculated straightforwardly.

R(El,E2)El =7EjVE2Ej -7E27E,El -7[E,,E2]El

=’7Ej(dA(Ej)E2) + 771772VE2(dv(E2)E2)
- dv(E2)7E,El + dA(El)7E2El

El * El * A E2 + dA(El)dv(E2) E, + 771772 E2 9 E2 e 1/ E2
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- dv(E2)dA(E1)E1 + ?11772(dv(E2))2E2 + (dA(El))2E2

(El * El 9 A + (dA(El ))2

+ 771772 (E2 * E2 e v + (dv(E2 ))2))E2-
Since we have

Ric(Ei, Ei) = tr(R(., El)El) = 02 (R(E2, El)El)

= 772 (R(E2, EI)E1, E2) = -772 (R(El, E2)El, E2))

Ric(El, E2) = Ric(E2, EI) = tr(R(., E2)El)
’

= 02 (R(E2, E2)Ei) + 01 (R(El, E2)Ei) = 0,

Ric(E2, E2) = tr(R(., E2)E2) = ni (R(El, E2)E2, EI)

= -77, (R(El, E2)El 7 E2)

we obtain Ric
1 Scal g, where
2

Scal = -271,772  R(El, E2)El, E2)

- -2(,ql (El * El 9 A + (dA(El ))2)

+ 772 (E2 * E2 * v + (dv(E2 ))2)

Finally, the sectional curvature is given by

K(T M) = -

(R(El, E2)El, E2)
Scal.

(El, Ei) (E2, E2) - (El, E2)
2 2

4.4 Submanifolds

Given a pseudo-Riemannian manifold (M,g) and an (immersed) sub-

manifold f: Z -+ M it is of interest which geometrical structure Z

inherits from (M, g). Examples for physically especially interesting sub-

manifolds are spacelike hypersurfaces (describing an instant of time,
cf. Sect. 5.4) or the integrated light cone. In Chap. 9 closed trapped

surfaces, a class of submanifolds of codimension 2, will play a central

r6le.

Remark 4.4-1. In this section we will explicitly refer to the immersion

f. Very often the immersed submanifold is a subset of M and f is the

canonical injection. In this case it is more convenient to omit any refer-

ences to f. We will often speak of tensor fields along Z instead of tensor

fields along f.
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We denote the space of vector fields along Z by To’ (f) and will use the

notation introduced ft-Alowing Lemma 2.9.2. In this notation, Lemma

2.9.1 is fundamental for the following.

Lemma 4.4.1. Let (M,g) be a pseudo-Riemannian manifold and

f : Z ---> M be an immersed submanifold of M. Then the following holds

for all vector fields U, V E To’(Z), X, Y Cz ’To’(f

0) Vf" Uf.V - Vf’ Vf-U = f.A V],

(ii) d  X, Y) (U) =  Vf.UX, Y) +  X, Vf.UY).
Proof These properties follow immediately from the definition of Vf*UX
(cf. Lemma 2.9.1) and the fact that V is a Levi-Civita connection. I

Definition 4.4. 1. Let f : Z -- M be an immersed pseudo-Riemannian
manifold and g be the metric of M.

The map f (or the immersed submanifold Z) is called non-degenerate
if f*g is a non-degenerate (0) -tensorfield. A non-degenerate submanifold2

is also called a pseudo-Riemannian submanifold, and a non-degenerate
hypersurface is also called a pseudo-Riemannian hypersurface.

Let Z be a non-degenerate immersed submanifold of (M, g) and de-

note by (T--Z)-L the set of all v E Tf(.,)M with g(v,w) = 0 for all

w E f*7: induces,,Z. The decomposition Tf(.,)M = f*T.,Z 0 (T
projections

v  __> vTE f*TZ and v  -4 v_L G (T. Z)
_L

such that v = v
T
+ v’ for every v E Tf (,,) M.

Lemma 4.4.2. Let Z be a non-degenerate immersed submanifold of
(M, g) and U, V E To’ (Z). Then VUV defined by

f*vuv:= (’7f*Uf* V)
is the Levi- Civita connection of (Z, f*g).

Proof Observe that VUV is well defined since f is an immersion. Proper-
ties (i)-(iv) in Lemma 2.9.1 imply that the Koszul equation (cf. Equation
2.7.7 in Theorem 2.7.1) is satisfied for V. I

Lemma 4.4.3. Let Z be a non-degenerate immersed submanifold of

(M, g). The map

1: IV (Z) X Tol (Z) - (TO,M)
I

(U, V) 1-4 I(U, V):= (,7f*uf*v)
is symmetric in U and V and Junction-linear. I is called the shape
tensor.
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Proof. The map _Y is clearly function-linear in its first entry. Recall that

the Lie bracket of any two vector fields tangent to Z is itself tangent to Z.

Hence Y(U, V) - _Y (V, U) = (Vf.Uf,,V - V
f.Vf,, U) = (f,, [U, V])

-L
=

0, which in turn implies that Y is symmetric. But then ff must also be

function-linear in its second entry. I

So far we have considered vector fields tangent to Z. We obtain similar

relationships for vector fields normal to Z.

Lemma 4.4.4. Let Z be a non-degenerate immersed submanifold of

(M, g). Let U be a vector field on Z and N be a vector field along Z

such that N(x) E (Tf(x)f,,Z)J- for all x E Z. Then Vf.VN is well

defined and we have

Vf,,VN = (Vf*VN) (I(V, .), N)

where 0 denotes the lift of indices with respect to the induced metric f*g.

Proof It follows immediately from the coordinate expression that Vf*
VN

does not depend on the extensions of V, N off Z. Hence it is well defined.

Let X be a vector field along Z and XT, X-L its tangent and normal

part. Then we have

(Vf*VN, X) = (Vf*VN, X-L) +  Vf*VN, XT)
=0

11 

= ((Vf*VN) _L, X + Vf*V  N, XT)

-  N, Vf*VXT )
= ((Vf*VN)-J-,X-L) -  N, (Vf*VXT)

(Vf*VN) X--L) -  N, y(V,XT))

Lemma 4.4.5. Let Z be a non-degenerate immersed submanifold of

(M, g) and let -y: [a, b] --* Z be a smooth curve. For every vector n

(T_ (a) Z)
-L there is a unique vector field N along f o -Y with

(i) N(a) = n,

(ii) N(t) E (f*Ty(t)Z)-L for all t c [a, b],

(iii) and (Vf* N)
1
= 0.
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We will write N(t) = P-L n and refer to it as the normal parallel

transport of n.

Proof. Let Ej,.. -, En-dim(_v) be orthonormal vector fields along f o -y

which span (T,,(t) Z)
-L

at every point. We can decompose any vector field

N along f o-y with values in (TE) -L
as N(t) = Ni (t)Ej (t). Similarly, there

are functions Fj: [a, b] --+ R such that (Vf*  Ej)
1

== TjEj. With respect

to these decompositions we obtain (Vf  N)J- = (- -N’+NjFj)Ej. Hence
dt

the equation (Vf* N)J- = 0 reduces to a first order system of ordinary
differential equations and each solution is uniquely determined by its

initial values N’(a) = n’. I

Proposition 4.4.1 (GauB equation). Let Z be an immersed non-de-

generate submanifold of (M, g). Denote by ER the Riemann tensor of
(Z, g) and let U, V, W, X E 701 (Z). Then we have

f
*

g (-’-R (U, V)W, X)
= (R(U, V)W, X) + (I(U, X), I(V, W)) - (I(U, W), I(V, X))

Proof. Since this is a tensor equation we can assume that [U, V] = 0. We

calculate

(R(f* U, f* V)f* W, f*X)

=  ’7f*U’7f*Vf*W’ f*X) - (,7f*V,7f*uf*W, f*X)
=  Vf*uf* (VVW), f*X) + (,7f* Uz(V, W), f*X)
- (vf*vf* (VUW), f*X) - (Vf*V1(U’ W), f*X)

=  f* (VUVVW), f*X) -  f* (VVVUW), f*X)
=0

+ Vf*u (_Y(V1 W), f*X) - (.Y(V, W), Vf*uf*x)

- V

--;,0-
,

f*V (_Y(U1 W), f*X) + (Y(U’ W), Vf*Vf*X)
= (f* (OR(U, V)W) , f*X) - (I(V, W), 1(U, X))

+ (YA W) I I(VI X)) -

Since I is neither a tensor field on Z nor a tensor field of M, the covariant

derivative of I is not defined a priori. However, it is easy to check that

for any vectors u, v, w c T.,Z and any vector fields U, V, W with U.,

u, V. = v, W,, = w the expression
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(vf.wl) A V) = Vf.W(I(U, V)) - I(VWU, V) - I(U, VWV)

depends only on the values of u, v, w. This justifies to call V_Y as defined

above the covariant derivative of 1.

Proposition 4.4.2 (Codazzi Equation). Let Z be a non-degenerate
immersed submanifold of (M, g) and let U, V, W E To’ (Z). Then we have

(R(f,,U,f.V)f,,W)-L = (Vf.U-ff) I(V, W) - (Vf. V_iT) I(U, W).

Proof. Let N be a vector field along Z which is orthogonal to TZ.

(R(f, U, f,,V)f,,W, N)

 Vf.UVf,,Vf.W, N) - (Vf.VVf.Uf*.W, N)
-  Vf*[U,V] f* W, N)
 Vf*Uf* (VVW) , N) + (Vf*UI(V, W), N)
 Vf*Vf* (VUW) , N) -  Vf*V.Y(U, W), N)
(1([U, V], W), N)

 I(U, VVW), N) +  Vf*UI(V, W), N)
-  I(V, VUW), N) -  Vf*VI(U, W), N)
-  I(VUV, W), N) + (I(VVU, W), N)

 (Vf*UI) (V, W), N) -  (Vf*VI) (U, W), N)
The assertion follows since N was an arbitrary vector field with values

in (TZ) 1. 1

For some purposes the shape tensor is too complex and also too rich in

information. In order to obtain a simpler geometrical quantity one can

average at a given point x C- Z the shape tensor over all direction in the

submanifold.

Consider a k-dimensional Riemannian submanifold Z C M. We

can then identify the set of directions in T,,Z with the unit sphere
Sk-1 = IV G T

x
Z : (f * g),, (v, v) = I J, This set is a compact Riemannian

submanifold of the Euclidean space (TxZ, (f*g).,). We denote by psk-,

the volume form of Sk- Iconsidered as submanifold of (Tx Z, (f*

g),,). A
good definition for the average of I over the directions in T.,Z is then

Average ’)I-tS2,
VOI(Sk- 1) fS2
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where the vector space valued integral is defined as in Remark 2.5.2. This

method would not work for pseudo-Riemannian manifolds which are not

Riemannian since in this case the set of directions does not correspond
to a compact pseudo-Riemannian submanifold of T,,Z.

We will now calculate the average in the Riemannian case. This leads

to a formula which can be straightforwardly generalised to arbitrary
pseudo-Riemannian submanifolds. For simplicity we only consider a 3-

dimensional submanifold Z C M. The general case is analogous but

calculationally more elaborate. Recall from Example 4.0.1 that we can

parameterise a dense open subset of S2 using the chart map  o given by

I
 Cos 0 Cos 0

(-7r, 7r) x (0, 27r) _4 S2, (0, 0)  -4 sin 0 Cos 0

sin 0

where T 3.,Z is identified with R via an orthonormal basis je-1, e2, e3j. De-

noting the induced metric on S2 by gS2 we have (gS2)00  :_- (gS2) (0o, ao)
1, (gS2)OW :-- 0, (gS2)00 :-- COS

2 0. Hence Lemma 4.2.3 implies tLS2

I Cos 01dO A do. Let e4, .... e,, be an orthonormal basis of (T,,Z)-L. There

are bilinear forms P with

n

1" (V, W) Y Ii (V, W) ej

i=4

for all v, w E T,,M. Since the volume of S2 is given by fS2 ItS2 :-- 47r we
3

obtain for the average of I.,

ej
47r  S2

i=4

n 7r/2

j27r
Cos 0 Cos 0

3

j
 Cos 0 Cos 0

fl, sin 0 Cos 0
,

sin 0 Cos 0 cos(O)dodO ej
4,7r

i=4 /2 0 sin 0 sin 0

n w/2 2w

Cos
2
0 COS2 0.yi

I + 2 Cos 0 sin 0 Cos
2 offi

47r
1: 1 12

i=4 -7r/2 0

2
0 COS2 Oyilil+ 2 Cos 0 Cos 0 sin 0

3 + sin
22

2 offi+ 2 sin 0 Cos 0 sin 01i23 + 19"" 33) cos(O)dodO ej

3
n 7r/2

3 07r_yi 3 0,7r_yi 2
0, yi

4,7r
E f

7r/2
( Cos I, + Cos 22 + 2cosO sin r 33) Cos OdO ej

i=4

n

(Yi1I + ’ri22 + -R’i33)) e-i

i=4

3

E f
*

g (ej, ej).B’ (ej, ej).
j=1
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This justifies the following definition.

Definition 4.4.2. Let f: Z -+ M be a non-degenerate immersed sub-

manifold of the pseudo-Riernannian manifold (M,g). The mean curva-

ture vector field H is defined by

I
dim(Z)

H.,
dim(Z)

E f*g(ei, ei)-Y(ei, ei),
i=1

where fel 7 edim(Z) I is an orthonormal basis of TM.

It is easy to see that H,, does not depend on the choice of orthonormal

basis. The mean curvature vector field plays a prominent role in the

investigation of black holes (cf. Chap. 9) and is closely linked to the

theory of minimal surfaces (cf. Lemma 4.4.8 below). The normalisation

factor 1 is more common in the mathematical literature than the
dim(Z)

more logical alternative 1. Since unusual normalisations are even worse

then bad normalisations we have retained this factor.

Definition 4.4.3. Let Z be a non-degenerate immersed submanifold of

(M, g). A (local) vector field n: Z ---+ TZ--L along Z with (n, n) = 1 is

called a normal vector field or simply a normal

The shape operator S,,: T,.,Z -4T Z ofZ associated with n is defined

by  S,,u, v) =  .Y(u, v), n).
,, Z) Rn the orthogonal projection. Then the sec-Denote by Irn: (T

ond fundamental form k. corresponding to n is defined by ir,, (1 (u, v))
k (u, v)n.

Definition 4.4.4. Let Z be a non-degenerate immersed hypersurface

of (M, g). The shape operator and second fundamental form of a non-

degenerate hypersurface are simply denoted by S and k.

The term second fundamental form comes from the theory of hypersur-
faces in Euclidean space (R3, which predates Riemannian ge-

ometry. The normal space of a non-degenerate hypersurface Z is I-

dimensional. Therefore there exists an (up to sign) unique normal vector

field n: Z --+ TM along Z. Hence even without choosing a normal, k

and S are uniquely determined up to sign. In Euclidean geometry, the

induced metric g = f is called first fundamental form since it

allows to determine fundamental geometrical quantities such as angles
and lengths. The second fundamental form k is another (o)-tensor field.

2

Since the GauB equation reduces to

(ZR(u, v)w, t) = k(u, t)k(v, w) - k(u, w)k(v, t),

the curvature of the surface Z is completely determined by k. Moreover,
k also determines the shape tensor and therefore how a hypersurface is
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curved in space. Hence k is indeed a geometrically fundamental quantity
which justifies the name second fundamental form.

Lemma 4.4.6. Let Z be a non-degenerate hypersurface with normal n.

Then the shape operator is given by Su = -Vf*un and the second fun-

damental form by k(u, v) = - (Vf*un, f*v) (n, n). The shape operator

S is self-adjoint and the second fundamental form k is symmetric.

Proo Let V be a vector field with Vf. ,
= v. Then we have (Su, f*v)

(ff (u, v), n) =  Vf*uf*V, n) (f*v, Vf*un). The normalisation,

(n, n)

implies(Vf*un, n) = 0 and therefore the first assertion. For the second

fundamental form we calculate

k(u, v) = (ff (u, v), n) (n, n) (’7f*un, f*v) (n, n) .

The self-adjointness of S and the symmetry of k follow from _Y(u, v)
ff(v, U).

In analogy to the mean curvature vector field one can introduce the

average of the shape operator.

Definition 4.4.5. Let f : Z -- M be a non-degenerate immersed hyper-

surface. Then the mean curvature is given by H(x) = n’Itr(k,,).

The most important mathematical application of this concept arises in

the theory of minimal submanifolds.

Lemma 4.4.7. Let (M, g) be an oriented pseudo-Riemannian manifold
and Z c M a pseudo-Riemannian hypersurface in M with normal n.

Then the volume form of Z is given by

yz = n-lym

(which implicitly defines an orientation of Z).

Proof. It follows directly from Definition 4.2.1 that either nJ pm or

-n J /,tm is the volume form of Z.

The rest of this section is an illustration of the concept of mean cur-

vature primarily directed to mathematicians.
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Let (M, g) be an oriented, Riemannian manifold and consider a compact
submanifold B C M of codimension 2. We denote the space of all smooth

hypersurfaces Z C M whose boundary is B by 9X(B). Then the question
naturally arises which Z E TZ(B) has minimal volume vol(Z) = f, Mz.
In general, there may not be a minimising hypersurface or it may not be

unique. Nevertheless, it is relatively easy to derive a necessary condition

any minimising hypersurface must satisfy.
Assume that Z is a minimising hypersurface and let U be a vector

field such that U(x) = h(x)n(x) for some function h: Z -4 R. If h(x) = 0

for all x E B then the flow Ft of U generates a smooth I-parameter family
Zt = Ft (Z) of hypersurfaces in 9X(B). Hence a necessary condition that

Z has minimal volume is given by (IT )
t=0 fFt, (Z) /-t Ft, (Z)

= 0
-

Lemma 4.4.8. Let (M, g) be an oriented pseudo-Riemannian manifold
and Z be an oriented non-degenerate hypersurface with normal n. Let ii

be a vector field in a neighbourhood of Z which satisfies

(i) n(x) = fi(x) for all x E Z and

(ii) (ii, fi) = 1

and h be a function and U = Mi. For the flow Ft of U we have

d

)t=o (n - qzhHpz,at-
Ft (_1) J z

where H is the mean curvature of Z and 77z = (n, n) E

Proof. Since all objects are smooth we can interchange differentiation

with respect to t and integration over Z and obtain, using Lemma 2.5.2,

Ft F
"

(p - Ft"p-
d

)t=o J M (_)
= (

d
t -) =

,
(
d

)dtdt
Ft, (Z t=O

= fz -CU(Az) = fz XU(n J AM)

= fz [U, n] J pm + n JXUttm

= fz Qhfi, n] J pm + div (hii)n J ym)

= fz (-dh(n) + div(hii))n J pm = fz hdiv(ii)pz.

Let fE,.... Enj be an orthonormal frame with E,, = ii and 01,..., on

be the dual frame. Then we get

n n-1

div(ii) = E Oa(VEaii) E Oa(VEaii) + on (,VEnEn
a=1 a=1
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=0

n-1

0 (5Ea) +  En, VEnE.,
a=1

(n - 1) (n, n) H.

Since for each function h with hIB = 0 we obtain a I-parameter family of

hypersurfaces Et E 9R(B) with Zo = Z a smooth hypersurface can only
extremise volume if H = 0. For if there would be a point x E Z \ JBI
with H(x) =A 0 then there would exist a neighbourhood Ux of x in Z and

a function h with

(i) h(y) = 0 for all y E B U (Z \ U ,),
(ii) h(y)H(y) > 0 for all y E B U Z,

(iii) h(x)H(x) > 0.

This would imply f,,qEhH1,tE  4 0 in contradiction to the extremality of

vol(Zo). The equation H = 0 can be understood as a differential equation
for a function f which describes the hypersurface Z. It is a classical

problem in differential geometry to solve this equation. A comprehensive

monograph on this subject (for M == R’) is (Nitsche 1975).

4.4.1 Hyperquadrics

In this section we study the simplest non-trivial class of hypersurfaces
of Rn. These examples will be used in Chaps. 7 and 6.

Let

V n

,q,: Rn x Rn -- R, (X) Y) E XiYi + E Xkyk.
j=1 k=v+l

be the standard pseudo-scalar product of index v.

Proposition 4.4.3. The pseudo-Riemannian manifold (R’ \  01, 71v) is
n I

foliated by hypersurfaces Quadv- (c) x E Rn \ 101 : q,(X, X) = C1,
where c E R. The hypersurface Quadn,-’(c) is non-degenerate if and only

if C =h 0.

n-i(c) are called hyperquadrics.These hypersurfaces Quadv

Proof. It is clear that every x G Rn \ fOJ lies in exactly one subset

n-i(c). ThesetQuadn-l(c) isthezerosetofx  -4 f,(x) = 77,(x,x)-Quadv V

c. Since df Ej=, xjdxj + Enk=,+, xkdxk does not vanish unless

x = 0 the map f has constant rank in Ix E Rn : x 7 01. Hence
n- 1

(C) is a hypersurface of Rn 01Proposition 2.1.1 implies that Quadv
The tangent space at x is given by Jv G Rn : 71, (X, V) = 01.
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Assume that c = 0
-
Then we have 77, (x, x) = 0 and therefore x G

T,Quae, (c). Since for any tangent vector v we have q, (x, v) = 0 the

induced metric is degenerate.
Assume now that c =h 0. Suppose there was a vector w .,Quad’-’(c)V

with 77, (w, v) = 0 for all v E TxQuad’v (c). Since we have also 71, (x, w)
0, this would imply qv (W I Y) = 0 for all y E R’. This is impossible since

qv is non-degenerate.

Lemma 4.4.9. Let c: -4 0. The map

t: Quad’v-1(c) --> Quad,,:vl(-c),
n-v

(xi I...Ixv, xV+1 I...IXn) __, (Xv+1.... I x-, xi
I ... IxV)

is an anti-isometry.

n-1(c) and Quad’-’(-c) coincide sinceProof. The hypersurfaces QuadL.
n-v

77v (X, X) :-- -?7n-v(44 4x))

for all x E Rn. The map t is an anti-isometry since for each pair of

vectors u,v E TxQuad’-’(c) = TxQuadn:,’(-c) we have Tlv(v,w)
-?7n-v(t*V, L*W)-

Lemma 4.4.9 implies that it is Possible to restrict attention to those

hypersurfaces Quad’,,-’(c) with c 0.

Definition 4.4.6. The Pseudo-sphere of dimension n, index V, and ra-

ic Sn-i(r) = Quadn-l(r’). If v = 0 we writedius r is the hyperquadr
V V

Sn-i(r) instead of Son-’(r) and Sn-1 instead of Sn-1(1).

Lemma 4.4.10. The pseudo-sphere Sn,-(r) is diffeomorphic to R’ x

Sn-i-v, where Sk denotes the k-dimensional unit sphere.

Proof. The diffeomorphism Mr: Rn --> Rn, x  _, -lx maps Sn,-’(r) onto

S,"(1). It is therefore sufficient to prove the lemma for r = 1. Con-

sider the map f : R’ X Sn- I- v
-4 Rn’ (y, Z)  _4 (y, V1 + I y  z). The

equation 77,, (f (y, z), f (y, z)) = I implies that the image of f is a sub-

set of Sn- 1 (1). The map f has also a smooth inverse map, f
- 1 (y, i) =

(y,,\/ll_+Jy _li), hence it is in fact a diffeomorphism onto Sn-1(1). I

Lemma 4.4.11. Let c = k 0. The hyperquadric Quadn-l(c) is a manifoldV

of constant curvature 11c.
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Proof. The shape operator is given by

Sv = -D
x

M
v( V_ICI V_ICI

whence the shape tensor reads

1(u, V) = -77V
u

,
v

c x("/-ICI ) Ici V-jCj

and the GauB equation (Proposition 4.4.1) reduces to

77, (R(u, v)v, u) =
C

( V (U, U),qv (V, V) _ nV (U, V) 2)
ICII

4.4.2 Umbilic and totally geodesic submanifolds,

The investigation of submanifolds is a classical field in differential

geometry. Naturally, one concentrates on submanifolds whose shape
tensor is of especially simple form since only for these classes one has

a chance of at least a partial classification. In this section we collect

those elementary definitions and results which should be covered in a

course of differential geometry.
Readers who are primarily interested in physical aspects can skip

this section.

Definition 4.4.7. Let f : Z -- M be an immersed pseudo-Riemannian

submanifold of a pseudo-Riemannian manifold (M, g).
A point x E Z is called umbilic if there exists a vector n E T,,M with

,,Z. The submanifold Z is called_Y(u, v) = f*g(u, v)n for all U, v E T

(totally) umbilic if all points in M are umbilic.

The submanifold Z is called totally geodesic if I = 0.

Lemma 4.4.12. Let f: Z -+ M be an immersed non-degenerate sub-

manifold of the pseudo-Riemannian manifold (M, g). Then the following
statements are equivalent.

(i) Z is totally geodesic;

(ii) For every curve -y C Z we have: -y is a geodesic of (Z, f*g) if
and only if f o -y is a geodesic with respect to (M, g).

(iii) For every v E T,,Z we have: If -y is the maximal geodesic in M

with  (O) = f,,v then there is a 6 > 0 such that 7Q-J,6]) C f(z)

(iv) For every curve -y: [a, b] ---> Z and every v E Ty[alZ we have:

The parallel transport of v along -y satisfies f.P,,(v) = Pf ., (fv).
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Proof. (i) <-* (ii): Recall that Vf. f,, = f,, V ,y + _Y( ,  ). Clearly,

I = 0 implies that the curve -y is a geodesic if and only if f o -y is.

Conversely, from the symmetry of I we infer that

I = 0 ’ * ff(V, V) = 0 VV.

The assertion follows from the decomposition above since for each v E

T,Z there is a geodesic -y with  (O) = v.

(ii) (iii): Trivial.

,,Z. The parallel transport(i) (iv): Let -y be a curve and v E T

P,(v) of v along 7 satisfies

0 = f.V P’Y(V) 17f. f.P’Y(V) - 1( ’ PY(V)).

Hence the equivalence "(i) (iv)" follows in the same way as "(i) 4=>

00". 1

The following lemma shows that totally geodesic submanifolds are char-

acterised by the infinitesimal neighbourhood of a single point.

Proposition 4.4.4. Let f: Z --> M and f:  -- M be two totally

geodesic submanifolds of the pseudo-Riemannian manifold (M, g). If there

.,Z = f,,T t then there are neighbour-are points x G Z, -, E  with f,,T,
hoods U of x and 1 of _;i- with f(U) = f(Z ).

Proof. Since expx is a local diffeomorphism near Ox E TxZ there are

neighbourhoods )IV,  V_ of x, i which are swept out by geodesics through

x, Jc. The image of these geodesics under f, f are geodesics of M by

Lemma 4.4.12. Since the tangent vectors of these two sets of geodesics

at f(x) each form a neighbourhood of 0 E f,,TxZ = fj;, , there

is a neighbourhood U of f(x) = f(x) with U n f(W) = U n f( V_). 1

4.4.3 Warped products

Many standard spacetimes have a generalised product structure, the

warped product structure. To write down curvature expressions for
this class in general will save work in Chaps. 6 and 8.

Definition 4.4.8. Let (Z, gz)  (F7 9F) be pseudo-Riemannian manifolds

of dimensions nz, nF and r: Z -4 R+ \ 101 be a smooth function. Then

the pseudo-Riemannian manifold

(Z x F,,7rz*gz + (r 0 7rZ)2 7rF*gZ) ,

where 7rE: Z x F --> Z and 7rF: Z x F -- F) are the canonical projec-

tions, is called the warped product of Z and F with warping function

r
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We can identify vector fields X an Z (respectively, V on F) with the

vector field satisfying k -7’(T,,,_k 0 (respectively with f7

satisfying 7rz,,V = G’ V). We Cali X (respectively, V) the lift
of X (respectively, V). In the following, we will make use of this iden-

tification and denote both vector fields by the same letter. Further, for

any vector field  on Z x F there are unique vector fields X on Z and

V on F with  = X + V.

For every x E M we denote the submanifold Z x f7rF(X)j of Z x F

by Z., and the submanifold 17rz(x) I x F by F ,.

Lemma 4.4.13. Let X, Y be vector fields on Z x F which are lifts of
vector fields on Z and U, V vector fields on Z x F which are li s of
vector fields on F. Then

0) 7rz*vyx::= v7rz*y7rz*xl
(ii) IrF*’7yX =: O 

(iii) VXU = VUX = d(Inr)(X)U,
(iv) 7rz*VUV = - (U, V) grad(ln r),
(V) 7rF*VUV = VITF*U7rF*V.

Proof. These equations can be verified using the Koszul formula (Equa-
tion (2.7.7)).

(i), (ii): Since -/rz: Z , --+ Z is an isometry, we only have to show

that  VXY, V) = 0 for all vector fields V which are tangent to the fibre

F. From Proposition 2.4.4 we get (7r-,) * [X, V] = 0 and (7F) * [X)’VI = 0

since (7rz)*V = 0 and (7rF)*X = 0. The Koszul formula (2.7.7) reduces

therefore to 2 (VXY, V) = -V  X, Y) -  V, [X, Y]). Since (X, Y) is a

function on Z the first summand vanishes. The second summand van-

ishes since [X, Y] is tangent to Zx -

(iii): From [X, U] = 0 we get VUX = VXU. The covariant derivative

VXU is tangent to the fibres Fx since  Y, VXU) = -  VXY, U) = 0

for all vector fields Y which are lifts of vector fields on Z. The Koszul

formula implies

2 (VXU, V) == X (U, V) = X(r29F (Ui V)) = 2rdr(X)gF (Ui V)
2

= -dr(X) (U, V).
r

(iv): The equation follows from

V,
1

dr(X)U(VUV, X)  V’Vux) = - ( r

-1 (U, V) (grad(r), X) .

r

(v): For each x E M the fibre Fx is a submanifold of M whose induced

metric 91F is a constant multiple of the metric on F, gjF,,’ = r
2 (X)gF-
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Hence their Levi-Civita connections coincide and the assertion follows.

I

Corollary 4.4.1. Let -y = (,yz, IF) be a curve in Z x F. A curve -y is

a geodesic if and only if

(i) V z Z ( F)  F) grad(In r),

(ii) V F F -2d(lnr)( -v) F.

Proof. We can write  (t) == X (-y (t)) + V(-y (t)), where X, V are vector

fields such that X(7(t) is tangent to Zy(t) and V(-y(t)) is tangent to F,,(t)
at all t. Then we have V,;/ == VXX + VXV + VVX + VVV and the

assertion follows if we project this vector to TZ,, and TF, I

Lemma 4.4.14. Let X, Y, Z be vector fields on Z x F which are lifts of

vector fields on Z and U, V, W be vector fields on Z x F which are lifts

of vector fields on F. Then

(i) irz,R(X, Y)Z = R-r(7-r.X, -7rz.Y)7rz,,Z,
(ii) 7rF,, R(X, Y)Z = 0,

(iii) R(X, Y)U = 0,

(iv) R(X, U)Y -IVVr(X, Y)U,
r

(v) R(X, U)V - (U, V) VXgrad(r),
(vi) R(U, V)X = 0,

(vii) 7rz,,R(U, V)W = 0,

(Viii) 7rF,, R(U, V)W = RF (U) V)W

+-’ (grad(r), grad(r)) ((U, W) V - (V, W) U).rT

Proof. Assertions (i) and (ii) follow directly from Lemma 4.4.13 (i) and

(ii). -

(iii): We may choose X, Y such that [X, YJ = 0. Then

R(X, Y)U = VXVyU - VyVXU
= VX (d In r(Y)U) - Vy (d In r(X) U)

= (VV ln(r)(X, Y) - dlnr(VXY) + dln(r)(Y)d ln(r)(X)) U

- (VV In(r) (Y, X) - d In r(VyX)+

d In (r) (X)d In (r) (Y)) U
= dlnr([X,YI)U = 0.

(iv): Since [X, U] = 0 we have

R(X, U)Y = VXVUY - VUVXY
= VX (dlnr(Y)U) - dlnr(VXY)U
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= VV In r(X,Y)U + dlnr(VXY)U
+ dlnr(Y)VXU - dlnr(VXY)U

= (VV In r(X, Y) + d In r(X)d In r(Y)) U
I

vvr(X, Y)U.
r

(vi): We can directly calculate

R(U, V)X = VUVVX - VVVUX - V[U,V]X
= VU(d In r(X)V) - VV(d In r(X)U) - d In r(X) [U, V]

2

= VV(In r(X)) (U, V) + d In r(X)VUV - VV(In r(X)) (V, U)
2 2

- d In r(X)VVU - d In r(X) [U, V]
0

where we have used that [U, V] VUV - VVU.
(v): Since (R(X, U)V, W) = (R(V, W)X, U) = 0, the vector

R(X, U)V

must be tangent to Z,,. The assertion follows from

(R(X, U)V, Y) (R(X, U)Y, V) -IVVr(X, Y) (U, V).
r

(vii): This follows from  R(U, V)W, X) -  R(U, V)X, W) = 0.

(viii) Observe first that the Levi-Civita connection induced on the fi-

bre F, equals the Levi-Civita connection Of 9F since both metrics differ

only by a constant factor r2 (x). The result follows from the GauB equa-

tion (Proposition 4.4.1) since by Lemma 4.4.13 (iv) the shape tensor is

given by 1(U, V) = - (U, V) grad(In r). I

Lemma 4.4.15. Let X, Y be vector fields on Z x F which are lifts of
vector fields on Z and U, V be vector fields on Z x F which are lifts of
vector fields on F. Then

(i) Ric(X, Y) = Ricz(irz,,X, 7rz,,Y) - ’F’7’7r(X, Y),
r

(ii) Ric(X, U) = 0,
Ar

+
(nr-1)(iii) Ric (U, V) = RiCF (Ui V)

r r2 (grad(r), grad(r))
x (U, V),

2nj- nl,,(nF-1)(iv) Scal = Scalz + 1- ScalF zAr
 -2 (grad(r), grad(r)).r2 r
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Proof Since Ric(X, Y) = tr(R(., X)Y) = trz(R(., X)Y)+trF(R(X, .)Y),

(i) follows directly from Lemma 4.4.14 (i), (iv) while assertion (ii) is a

consequence of Lemma 4.4.14 (iii) and (v). Formula (iii) is implied by

Lemma 4.4.14 (v) and (viii) and assertion (iv) is just the metric trace of

(i) and (iii).

4.5 Isometries and Killing vector fields

An isometry is a diffeomorphism which preserves the metric. pseudo
p. 189 11

- I [I p. 210]1
Riemannian manifolds with many isometries are especially simple.

The relevance to the theory of space and time comes from the fact

that observations indicate that our universe is well approximated by

Lorentzian manifolds with many isometries (cf. Chap. 6).

Definition 4.5. 1. Let (M, g) and (1 1, j) be pseudo-Riemannian mani-

folds. An isometry is a diffeomorphism 0: M -- 1 1 which preserves the

metric, (O*j) = g. A local isometry is a local diffeomorphism 0 such that

= g., at all points x E M.

Lemma 4.5. 1. Let (M, g) and (1 1, ) be pseudo-Riemannian manifolds

and U C 1 1 be a connected open set. If 0, 0: U --+ 1 1 are local isometries,

then 0 = 0 if and only if there is a point x G U with TO = T,,V).

Proof. The two isometries clearly coincide on the closed set V = ly G

U : TyO = Ty,01. Since V is non-empty and U is connected, we only

need to show that V is open. Let y e V and W be a normal neighbour-

hood of y. Then for every z E W there is a vector v[z] E TyM with z =

expy(v[z]). But this implies O(z) = O(expy(v[zl)) = expO(Y)(TyO(y[zJ)) =

exp,b(Y)(TyO(y[z])) = V)(expy(v[z])) = O(z). Hence 01W = 01-,V and

therefore W C V. I

Definition 4.5.2. A Killing vector field is a vector field  whose flow

defines local isometries.

Lorentzian manifold (M, g) is stationary in a region U c M if there

is a timelike Killing vector field in U. It is static in U if this Killing

vector field is orthogonal to spacelike hypersurfaces.

Clearly, only very special pseudo-Riemannian manifolds can have non-

zero Killing vector fields. A simple example is given by a metric which

does not depend on one of the coordinates. Then the corresponding

Gauffian vector field is a Killing vector field.

Lemma 4.5.2. A vector field  is Killing if and only if.C g = 0 if and

only if V ’ is antisymmetric. In this case we have Ve = - ’ de.



210 4. Pseudo-Riemannian manifolds

Proof. The first equivalence is clear since the Lie derivative X is the

derivative along the integral curves of  . In order to prove the second

equivalence we calculate

Gc g)(U’ V) = -C A V) - (qu’ V) -  U’ X V)

= V (U, V) -  V U’ V) + (vu ’ V) -  U’ V V)
+ (U1 VVO

V  (u, V) + V 5 (V) U).

Here we have used that for a Levi-Civita connection the terms marked

with a * add to zero. It follows that  is a Killing vector field if and only if

V  is anti-symmetric. Now the assertion follows from (de)ab = 2V,,, bj.
[Fp.-209--q]

p. 255

Proposition 4.5. 1. Let be Killing vector fields. Then [6, 61 is

also a Killing vector field, i.e., the Killing vector field on a pseudo-
Riemannian manifold form a Lie algebra.

Proof. We have only to show that the commutator of two Killing vec-

tor fields is a Killing vector field. From Proposition 2.4.3 we know that

X 0 = [X , X, ] V) for any tensor 0. In particular we obtain I [ ’ Mg =

X ’C?7g - X77’CO 0 - 0 0’

Lemma 4.5.3. Let  be a Killing vector field and -y be a geodesic. Then

 1,y is a Jacobi field and s F-+  is constant.

Proof,
Denote the flow of  by Ft. Since Ft is an isometry for each t

and s 1--4 7(s) is a geodesic, the curve s F--> Ft(-y(s)) is also a geodesic.
Hence (s,t)  -4 Ft(^ (s)) is a variation of geodesics and its deviation

vector field, - -Ft-y(s) is a Jacobi field. For the second propertydt

note that ’7  is anti-symmetric by Lemma 4.5.2. Hence V ,-y)

 ) +   ’ V  ) = Ve ( ’  ) = 0. 1

In the rest of this section we will investigate highly symmetric pseudo-
Riemannian manifolds. These results are of independent mathemati-

cal interest and will be used in Chaps. 7, 6.

Definition 4.5.3. A pseudo-Riemannian manifold (M, g) is called lo-

cally symmetric if VR = 0.

This definition implies that the components of R with respect to a par-

allelly propagated frame are constant functions.
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Lemma 4.5.4. Let (M, g) be a pseudo-Riemannian manifold. It is lo-

cally symmetric if and only if for every curve -y and all vector fields

U, V, W wich are parallelly propagated along -y the vector field R(U, V)W
is also paralley propagated along -y.

Proof. The equation VR = 0 implies for parallelly transported vector

fields U, V, W

=0

V (R(U, V)W) = (V R) (U, V)W + R(V U,V)W

+ R(U,V V)W + R(U, V) V W
0

along -y. Hence R(U, V)W is also parallel along -y.

Conversely, let  , u, v, w G T,,M and -y be a curve with  (O) Let

U, V, W be the parallel propagation of u, v, w along -y and assume that

the vector field R(U, V)W along -y is also parallel. Then the assertion

follows from

=0

(17 R) (u, v)w = ’1’7 (0)(R(U, V)W) -R(V (O)U, v)w

- R(u, V (O)V)w - R(u, v) V, (Off
= 0.

I

Theorem 4.5. 1. Let (M, g) and (1 1, j) be locally symmetric manifolds
and x E M, , E 1 1. If there exists a linear isometry A: TxM -- T=1

with AR(u, v)w = f?(Au, Av)Aw for all u, v, w c TM, then there are

neighbourhoods U, 1 of x,.: and a unique isometry 0: U with T

A.

Proof. We only need to prove existence since uniqueness follows from

Lemma 4.5.1. We will show that for some normal neighbourhood U of x

the map 0: U --* 1 1, y F--* exp, oA o exp.,-’ is a local isometry. First

note that 0 is well defined if U is sufficiently small. By Proposition
2.6.5 there is for every y E U a unique w., c T,,M with exp(w.,)

y. Further, for every uy E TyM there is a unique iiw. G Tw.,,,. (TxM)
,,M C Tw.TM there is awith Tw. exp,,(iiw.) = uy. Since U, TwxT

vector Ux such that i1w.,,
It=0

(wx + Ux). It follows therefore from
dt

Proposition 2.9.5 that  uy,uy) =  J(1),J(1)), where J is the unique
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Jacobi vector field along the curve -y: t  -4 f (0, t) with J(O) = 0 and

V J(O) = ii,,. From the definition of 0 we get

0. (uy) = T expj TATexp.,
- 1

(uy) = T exp;z, TA = T exp,;,- (AUAw.,j

and by the same argument as before it follows that there is a Jacobi

field j along the geodesic  : t i--> exp(tAw,,) which satisfies J(O) = 0,
V

ly
J(0) = Au, and j(0. (uy), 0,, (uy)) = j (J(I), j(1)).
Let fEl, . . . , E,, I be a parallelly propagated frame along -y with El =

and let fkj, . . . ,
&I be the unique orthonormal, parallelly propagated

frame along  with Ei(O) = AEj (i E fnj). With respect to these

frames the Jacobi equations for J and J are given by

d2 ji
n

jk
d2 ji n

jk.
dt2

+ Y R’IkI and
-Tt-2

+ Y_ -I ilkl
k=1 k=1

Here we have used that  is the unique geodesic with  (O) = A (O) which

implies that ti The functions R’1kj and R1kj are each constant

by Lemma 4.5.4. Since we assume AR(u,v)w = R(Au,Av)Aw for.all
u,v,w E T R’,,M, the definition of our parallel frames implies R’1kI =

1kI

for all i, k. Further, the functions ji, jk Satisfy jk (0) = jk (0) = 0 and

(by the definition of our frames) Ajk(O) = _ _jk(O). Hence the funda-
dt dt

mental theorem for differential equations 2.4.1 implies jk (t) = jk (t) for

all k and we get

n

j(O.UY, 0.UY) (j(j) , f(11: ji(j)jk(j)j(t,(j)j kk (1))
i,k=l

n

= E ji(j)jk(j)j(ki(0), kk (0))
i,k=l

n

ji (1) jk (1)j(AEj (0), AEk (0))
i,k=l

n

= 1: ji(j)jk (1)g(Ei (0), Ek (0)) = 9V(1) 1
J(1)

i,k=l

g(UY’ UY).

and the assertion follows from the polarisation identity

g(u, V) 1(g(U + V, U + V) - g(u, U) - g(V, v)).
2
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Proposition 4.5.2. Let (M, g) and (1 1, j) be pseudo-Riemannian man-

ifolds with constant curvature c and a. They are locally isometric if and

only if they have the same dimension and signature and satisfy c = a.

Proof. Observe first that the conditions are necessary.

We show now that a pseudo-Riemannian manifold with constant cur-

vature is necessarily locally symmetric. Let t, u, v, w E T’M and U, V, W

vector fields which satisfy U.., = u, V ,,
= w and whose covariantv, W

derivatives vanish at x. From Proposition 4.3.3 we get

(VtR) (u, v)w = Vt(R(U, V)W) - R(VtU, v)w
- R(u, VtV)w - R(u, v)VtW

= cvt ((V, W) U - (U, W) V) = 0.

If (M, g) and (k,  ) have the same dimension and signature then for

any x G TxM, 5 E T k there exists a linear isometry A: TxM -- T;-

If (M, g) and (1 1, have the same constant curvature then this isom-

etry satisfies AR(u, v)w = k(Au, Av)Aw for all u, v, w E TxM and the

assertion follows from Theorem 4.5.1. 1

Corollary 4.5.1. Let (M,g) be a pseudo-Riemannian manifold with

n-1(c)non-zero constant curvature. Then there is a hyperquadric Quad,

(c: 0) which is locally isometric to (M, g).

A global classification of pseudo-Riemannian manifolds with constant

curvature is much more difficult (Wolf 1977). The following Lemma in-

dicates that Hyperquadrics have a very large isometry group.

n-1(c). For any pair ofLemma 4.5.5. Let c : 0. and x, y E Quad,
n-1(c) and ffj,...’fn} Corthonormal bases fel,...,enj C TxQuadv

TyQuadn-l(c) there is an isometry 0: Quadn-l(c) ---> Quad’-’(c) with
V V V

0,(ei) = fi (i Ell,..., nj).

Proof. Let  : Rn --+ Rn be the linear map which maps x, ej,...’ en to

Y, fl, f,,. It is an isometry of (R’,,q,) onto itself and therefore also

n-1(c) onto itself. Since 0*(ei) = 0(ej) = fi, the restrictionmaps-Quadv
n-1

0 of 0 to Quad, (c) is the desired isometry. 1

4.6 Length and energy functionals

In this section we will study the problem of extremising the length
functional and find necessary and sufficient conditions in the Rie-

mannian and the Lorentzian case. Here we will lay the foundation
for many surprisingly strong global theorems in differential geometry
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(e.g. the Theorem of Myers,cf. (ONeill 1983, theorem 10.24)) and

for the singularity theorems in general relativity (cf. Chap. 9).
This section is mathematically more involved than the other sec-

tions in this chapter and can be skipped on first reading.
This section uses material from Sect. 2. 9.

In Riemannian geometry the length of a curve measures how much wire

one would need to model the curve in space. It is a fundamental geo-
metrical experience in Euclidean geometry that for any given (not too

distant) pair of points there is a curve of shortest length which connects

them.

In Lorentzian geometry the length of a causal curve can be inter-

preted as the proper time an observer needs in order to traverse this

world line. Since in special relativity moving clocks are slower (twin para-

doxon) one expects that for any two (not too distant), causally related

point there is a longest causal curve which connects them.

For other signatures the problem of extremising length does not lead

to non-trivial results (cf. Lemma 4.6.9)
For the discussion in this section it is technically advantageous to

widen the class of admissible curves to the continuous, piecewise smooth

curves. The advantage lies in the fact that in many situations it is much

easier to construct a continuous, piecewise smooth curve with certain

properties than a smooth curve.

Definition 4.6.1. Let (M,g) be a pseudo-Riemannian manifold and

-y: [a, b] -- M be a continuous, piecewise smooth curve in M.
b

Then the length of 7 is defined by L(-y) V/j__g( (t),  (t)) I dt.

This definition makes sense since a piecewise smooth curve has a well

defined derivative everywhere but on a set of measure zero. It is inde-

pendent of the chosen parameterisation. In the case of Euclidean space

it coincides with the length one would define through the approxima-
tion of -y by polygons. The following lemma guarantees that there are no

repercussions in considering piecewise smooth curves instead of smooth

curves.

Lemma 4.6.1. Let -y: [a, c] --+ M be a piecewise smooth curve. Then

there is a sequence of smoothly immersed curves -yi: [a, c] --> M which

converge pointwise to -y and satisfy  j(t) limi-,, L(-Yi) = L(-Y).

Proof Assume that -y is the concatenation of two smooth curves M: [a, b] --->

M and \: [b, c] --- M where ft(b) = A(b). We choose a coordinate system

(Xl,...,Xn) such that A is given by t   (t,0,...’0). Let io (E N such

that b - 2-’11 > a and let tj = b - 2-’ where i > io and i E N. By Lemma
2.1.7 there are smooth functions Wj,,0j: [a, c] -+ [0, 11 such that
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I for all t E [a, ti- I],

 Oj (t) >
1

2
for all t < ti+j],

= 0 for all t E [b, cl,

= 0 for allt E [a,ti-1],

Oi (t) > -1
2

for all t > ti],
1 for all t E [b, c],

We define the curve pi with respect to our coordinate system by

t

/-t’(ti-i) + I (W,(S) (Ak(s) + C O,(S)) + jkO, (s)) ds,
ti - I

where the constants cik are determined by the condition A(b)
Notice that 1,t(t) = -yi(t) for t < ti-I and -yi(t) = A(t) for t > b. Since /-t is

smooth there is a number c > 0 such that I Ak (t) I < c and I yk (t) -A(b) I =

jy"(t) - /-t(b)l < c1lb - tj for all t E [a, b]. Hence using W(t)oi(t) > 1/4 for

t E [ti, ti+,] we obtain

c Iti+1
- ti

<  
b

c Wi(s)Oi(s)ds
4

b

Ak (b) Ak (ti- I I +i. W,(S)Ak (s)ds -
ti-I

+ 5,koi(s)ds

< (2c + 1) (b - tj+j).

From ti b - 2-1 we get IcikI :5 2(2c + 1). Since cik,  oj(t), Oi(t) are

uniformly bounded with respect to i, the curves -yj converge pointwise
to -y and the lengths of -yj converge to the length of -y. I

Corollary 4.6.1. Assume that (M,g) is a Lorentzian metric and that

-y: [a, c] - M is piecewise smooth future directed causal curve. Then

there is sequence of smoothly immersed timelike curves 7j: [a, cl --> M

which satisfies  j(t) -4  (t), -yi(t) --> -y(t), and L(-yi) --- L(7).

Proof. We can assume without loss of generality that -y is the concate-

nation of two smooth curves mu: [a, b]. -- M and A: [b, c] ---> M with

[t(b) = A(b) such that both A(b) and A(b) point into the same future

cone. There are sequences of timelike curves pi and Ai which converge

to p and A and satisfy Mi(b) == Ai(b) = p(b). For each such pair of curves

Lemma 4.6.1 provides a sequence -yi,j of curves such that -yij converges



216 4.  ,nanifolclms,

to the concatenation of Mi and Ai. Since both, Ai and pi are timelike and

future directed so is 7ij for j enough. We can assume without loss of

generality that all - ij are timelike. It follows that the sequence f-Yi,ijiEN
consists of timelike curves and converges to -y.

4.6.1 Variation of length and energy

In Euclidean space, the shortest curve between two points is the straight
line connecting them. In Minkowski space, the longest causal curve be-

tween two points x, y E I+ (x), is also the straight line connecting them.

Fig. 4.6.1. A broken lightlike geodesic can be

smoothed out by a curve of arbitrarily small length

In a general Riemannian manifold "without holes" it is intuitively
clear that any two points can be joined by at least one shortest curve.

In a Lorentzian manifold, the infimum over the length of all curves

which connect x and y is always zero since we can join any two points

by a broken lightlike geodesic which then can be smoothed out to give
a smooth curve of arbitrarily small length (cf. Fig. 4.6.1 and Corollary

4.6.1). It is also clear that there does not exist a curve of maximal length
connecting x and y since we can always choose a spiralling spacelike curve
of arbitrarily large length (cf. Fig. 4.6. 1). However, we will see below that

in many situations there exist curves connecting causally related curves

x and y which maximise L in the class of all causal curves.
5

pseudo-Riemannian manifolds which are neither Riemannian nor Lo-

rentzian do not admit any non-trivial solutions to the length extremising

problem, even if one restricts to spacelike or timelike curves. These ar-

guments will be made precise in Lemma 4.6.9 below.

5 Our examples also imply that the length extremising problem does not have

a solution if one restricts to spacelike curves instead of causal curves.
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Fig. 4.6.2. A curve minimising the

distance between two spacelike sub-

Z1 manifolds Z, and Z2

We will actually investigate the slightly more general problem where

the endpoints x, y are replaced by submanifolds without boundary Z1,

Z2 (cf. Fig. 4.6.2). In order to solve the length extremising problem in

the Riemannian and in the Lorentzian case we will study 1-parameter

families of curves f : [a, b] x (-E, E) --+ M, (s, t)  -4 f (s, t) such that

f (s, a) =E Z, and f(s, b) (E Z2 for all s. If 7 extremises the length
functional L for all smooth curves

6 which connect Z, with Z2, then we

have A, L(f (s, .)) for all such I-parameter families with - (t) = f (0, t).
ds ls=o

Through the investigation of d
2

L(f(s, .)) we will arrive at sufficient
dsyls=o

conditions.

Definition 4.6.2. Let Z1, Z2 be submanifolds of M and -y: [a, b] -- M

be a curve which connects Z, with Z2-

A continuous variation f: (-E, E) x [a, b] --+ M, (s, t)  --> f (s, t) of -y is

called piecewise smooth if there are numbers tj.... ) tk E (a, b) such that

f, x [t,,t,+,] is smooth, where to := a, tk+1 := b and i C= f 0,. .. , Q.
A (continuous, piecewise smooth) variation f of -y connects Zi with

Z2 if f (s, a) E Z, and f (b, s) G Z2 for all s c (-E, e).
We denote the vector field T(,,t)f (as) along f by fs, the vector field

T(s,t) f (,Yt) along f by ft (where defined), and call the (piecewise smooth)
vector field  (t) : = (f,)) I s=o along 7 the variation vector field.

Lemma 4.6.2. Let -y: [a, b] ---+ M be a smooth curve which connects two

submanifolds Z1, Z2. For any vector field  along -y with  (a) E Ty(a)ZI,
 (b) E Ty(b)

Z2 there exists a variation f of -/ which connects Z, with

Z2 and which has variation vector field  .

Proof. Let M, C Z, and /LL2 C Z2 be smooth curves with pi(O) = -y(a),
A2(0) = -y(b), Al(O) =  (a), and A2(0)  (b). We can now extend  to

a vector field -";’ such that yj (i E f 1, 2 are integral curves of If F

denotes the flow of E we set f (s, t) = F, (-y (t)).

6 In the Lorentzian case: all smooth, causal curves
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If -y: [a, b] -- M is piecewise smooth then  is discontinuous at those

points where -y fails to be smooth. We will therefore need the following
technical definition.

Definition 4.6.3. Let -y be a continuous, piecewise smooth curve and V

be a piecewise smooth vector field along -y. For each to E [a, b] we set

,,AV(to) lim V(t) - lim V(t).
t_tO’t>tO t_tO’t<tO

It is clear that zAV(to) 0 if and only if V is continuous at to.

Lemma 4.6.3 (First variation of arc length). Let y: [a, b] -4 M be

a spacelike or timelike, continuous, piecewise smooth curve, let 77 =

sign(( , and f : [-E, E] x [a, b] M, (s, t) 1-4 f (s, t) be a continu-

ous, piecewise smooth variation of with variation vector field  . De-

note by tj.... I tk E (a, b) the points where -y fails to be smooth. Then the

derivative of L with respect to s is given by

d
L(f(s, 1 dt(is -77

ls=o

k

00
VI-1_Mti)Mti)) I

 b.
a

Proof. If 6 is small enough, all curves f (s, -) are either timelike or space-

like, and the integrand \/I_((ftjt))I is differentiable for all (8, t) where

f is differentiable. We can therefore exchange on every smooth piece of

7 the differentiation and the integration. Now the assertion follows from

d - ft f

ds- ft’ ft) =) V Oft ) =-- ’R  ft
at fS_Utlft) V _(ft-1ft)

ft ’t
f,

V17-W-1ft)
, f, at 77M--t,

Corollary 4.6.2. Let (M, g) be a Riemannian or Lorentzian manifold,
Z1

 
Z2 be two submanifolds without boundary, and -y be a curve connect-

ing Z, with Z2 -

(i) If (M, g) is Riemannian and -y is shorter than any other (neigh-
bouring) curve connecting ZI and Z2 then -y is a pregeodesic which

intersects both Z1, and Z2 orthogonally.
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(ii) Assume that Z1, Z2 are Riemannian submanifolds or degenerate
to a point. If (M, g) is Lorentzian and -y a causal curve which is

longer than any other causal curve connecting Z, and Z2 then -y is

a causal pregeodesic which intersects both Z1, and Z2 orthogonally.

Proof. We prove only (i) since the other case is completely analogous.
We assume first that -y is not a pregeodesic. Observe that it is a

pregeodesic if and only if V(t) := V 0 for all t. Hence by ( 1A0-1^1y)I ) =

our assumption there would be a point to c (a, b) with V(to) =h 0. Let

 , be a vector field along -y such that (V (to),  , (to)) < 0. BY continuity
there is a neighbourhood (t-,t+) of to such that (V(t),61(t)) < 0 for

all t c (t-, t+). Let now W be a smooth, positive function with support
in (to, t+) and W(to) =h 0. (Such a function exists by Lemma 2.1.7).
Then (V(t),  p(t) i (t)) > 0 for all t C- [a, b] and does not vanish in a

neighbourhood of to. Taking a variation with variation vector field  =

 o i we obtain therefore (Td- L(f(s, -))) ,=o
< 0. This implies that there

ds

are shorter curves than 7 in contradiction to our assumption.
We assume now that -y is a pregeodesic but does not intersect Z,

orthogonally. Then there is a vector v E Ty(a)Zi with ( (a),v) < 0.

Let  be a variation vector field with  (a) = v and 6(b) = 0. Since

6(a) is tangential to Zi there is a variation f of -y with variation vector

field  such that f (s, -) connects Zi with Z2 for all s. Again we obtain

(jd- L(f (s, -))) ,=o
< 0 in contradiction to our assumption that -Y is lengthds

minimising. It follows that -y intersects Zi orthogonally.

Finally observe that the same argument holds equally well for Z2. I

The discussion above does not apply to null curves since L involves the

square root of This problem can be avoided if one considers the
b 1 7

energy of the curve -y, E(-y) := f’  E ( (t) (t)) dt.
a

Unlike the length functional this integral expression does depend on

the parameterisation of the curve. While it is not true that spacelike or

timelike curves which extremise L also extremise the energy integral, we
will see below that this property almost holds.

Lemma 4.6.4 (First variation of energy). Let -y: [a, b] --4 M be a

continuous, piecewise smooth curve and f : [-(E, 6] x [a, b] ---* M, (8, t) F-->

f (s, t) be a continuous, piecewise smooth variation with variation vector

field  . Denote by t,.... I tk E (a, b) the points where -y fails to be smooth.

Then the derivative of E with respect to s is given by

The name "energy" comes from the fact that in the Riemannian case the in-

tegrand is just the kinetic energy of a mass point of mass 1. In the Lorentzian

case the integrand has nothing to do with energy.
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d fb
k

E(f(s, .))  ) dt + E (J (ti),  (ti)) +(ds )
1’=O

=

"
i=1

Proof. Consider a piece of -y where it is smooth. The assertion follows

from

I d
(f" f’) ft ,

If7
a ’ ft ft, Vf

a, f, (ft, f ’) If7
at ft, f ’

2 ds

It follows that a curve which extremises energy is a geodesic (and not

merely a pregeodesic).
We will now, derive sufficient conditions for curves to extremise the

length between submanifolds without boundary. But first we need a tech-

nical lemma.

Lemma 4.6.5. Let 7 be a spacelike or timelike pregeodesic and denote

the orthogonal projection to the orthogonal complement of -Y by (.)-L.
Then for every vector field V along - the formula (V V)’ = V (V)
holds.

Proof. The vector field V can be decomposed into its part orthogonal to

 , W, and its part tangent to  , W , where W is a smooth function. From

V =W +W and ( ,W) =Oweget

(V V)-L = dW( )( )
1
+ W (VA

-L

+

where we have used that a curve is a pregeodesic if and only if V  
The assertion follows now since

 W’ V  ) = 0 - 0 = 0

implies (V W) V W = V (V’).

In the following we will freely interchange I and V when 7 is a geodesic.

Lemma 4.6.6 (second variation of arc length). Let 7 be a space-

like or timelike geodesic with 77 = G 1-1,11 and let f: [-E,E] x

[a, b] -- M, (s, t)  --+ f (s, t) be a continuous, piecewise smooth variation

of -y. If we denote by ti, . .. 7 tk E (a, b) the points where f (s, -) fails to be

smooth then the second derivative of L o f with respect to s is given by

d2
L(f (s, 77 jb + (R( , dt

2ds
15=0

(
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+ (
f

fs

 V, V,541 + R( 
1

dt

k

as Is=O,  b
a

where  denotes the variation vector field and -J- the orthogonal pro-

jection to ( )
’

.

Proof. Using the formula for the first derivative in the proof of Lemma

4.6.3 we obtain

d2 -

d82
V77 (ft I ft)

d ft f

ds ( V7-77ft, ft)
,V ash

77 f f

/?__3
ft, V a,ft ft, V aft)

V I (ft I ft)

77 f
+

(Y-Ift)
V a,ft,

Vf
a, ft ) + (ft,

Vf
’9,

If7
9, ft

(4.6.3)

f f
From V a ,ft =V atf, and

f f f f f f

v a., V 9, ft =V as V at f , =V at V 9, f, + R(f, ft) f,

f f f
we get V a, ft, Vf

as ft V atf,,V atfs) and

f f f f
ft, V a, V a"ft ft, V 9t V 95 f, ) + (ft, R(fs, ft) f,)

Since for every vector field V along -y we have V = V-L + 77
(V’f")

ft and
(ft, I ft)

therefore (V, V) =  V 1

, VJ-) + the second and third summand in

Equation (4.6.3) simplify to

f

Vfn- (ft I ft)
atfs)

f

atf,)
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f
Using the product formula for the term  ft, Vf V we finallyV at V a,,f,)
obtain

d2 b
77 f

*’ :7:t_-If=t):: aif’)
’

, (
f( dS2 L(f(s, -)))

1 ’=O

= I ( ( (V V

f f f
+ ft, V a, fS) - V at ft, f ’

+ (ft, R(f, ft) f,) ) dt

and the first equality in the assertion follows since f(0, -Y is a geodesic
with ( ,  ) = q.

Since for every smooth piece of the variation f the equation

(V4-L "74 1 ) =  V  -L’  -L )’ - (V 74-L’  -L )
holds, the second equality follows from an integration by parts using

There is an analogous formula for the second variation of the energy

integral.

Lemma 4.6.7 (second variation of energy) -
Let -y be a geodesic

and f : [-,E, E] x [a, b] -- M, (s, t)  -* f (s, t) be a continuous, piecewise
smooth variation of 7. Denote by tj ...

7 tk c (a, b) the points where

f (s, -) fails to be smooth. Then the second derivative of E with respect
to s is given by

d2

E(f (s, fb ( V4, V4) + (R( , dt
d82

Is=0

+
f
V a, f.’)

,=,,

I  )
f +

’a’.

k

+
f

11=0
 )
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Proof. The first equation follows from

1 d2 f f f f

2 j_S2 (ft (S’ ft (S’ V Oft’ V Oft + V 0, V C’), ft I ft

f f f f
V atf" V atf, + V ’9 ’ V atfS, ft

f f f f
V atfS,V at f,9 + V at V’9’fS’ ft)

+ (R(f, ft)f, ft)

f f
V atf" V atf. ) +  V’ a ’ f " ft

f f
V7 a f, V atft) + (R(f, ft)f,, ft)

The second equality follows from an integration by parts exactly as in

the proof of Lemma 4.6.6. 1

Lemma 4.6.8. Let Z1, Z2 be submanifolds of M and -y: [a, b] ---> M be

a curve from Zj to E2 which intersects both submanifolds orthogonally.
Assume that f is a (continuous, piecewise smooth) variation of 7 which

connects Z, with Z2. Then

f( (V a’f’) 1’=O’  )  
a

= (.Yz2( (b),  (b)),  (b)) -  .Yz, ( (a),  (a)),  (a))

holds, where lz,, denotes the shape tensor of Zi.

Proof The assertion follows immediately from the definition of the shape
tensor and our assumption -y(a) I Z1, -y(b) 1 Z2- I

Lemma 4.6.8 implies that for a geodesic variation the second deriva-

tive
d2

L(f(s, .)) (respective d2E(f(s, .)) ) is a quadratic( a_S2 )
1,9=0

1y -d-s-7 )
jS=O

form on the space of all variation vector fields along the central geodesic

-y. The associated bilinear form is called the index form 1,L of -Y (respec-

tively, LEY of -y). It is an infinite dimensional analogue to the Hessian of

a function.

Definition 4.6.4. Let Z1, Z2 be submanifolds ofM or points in M and

[a, b] -- M be a geodesic which connects Z, and Z2 and intersects both
I

-y be the space of piecewisesubmanifolds orthogonally. Denote by TZ’l,Z2
smooth vector fields along -y which are tangent to El at a and to Z2 at

b.

The energy index form is the bilinear form
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E, -Y Ti I
R,X ’T ,,.27

( (V 6 i V 6) + (R( l dt

+ (’Z2( l (b),  2 (b)),  (b)) - (1z, ( l (a), 6 (a)),  (a))

If -y is either spacelike or timelike and satisfies 77 E 1, 11, the

length index form is defined by

1 -Y --> R,’Y -1 11’ - -r,’l,-2IL11’’ Z2 Z2 / X

77  V41j-, V 62-L ) + (R( l,  )6, dt

+ 77 (Iz2( l (b), 6 (b)),  (b))
- Tj (1zj (61 (a), 6 (a)),  (a))

Corollary 4.6.3. Let 7 be a geodesic from Zi to Z2 which intersects

, IL,-ythese submanifolds orthogonally. The index form Z1, Z2
is positive semi-

definite if -y minimises length and negative negative semi-definite if -Y

maximises length.

Proof. For L the assertion follows from the Taylor expansion

d 8 d
+O(S3).L(f(s, -) = L(-I) + s(is-

L(f (s, -))’=0+2 dS2
L(f(s, .))

8=0

The proof for the energy integral is exactly the same. I

The following lemma summarises in which cases there is a non-trivial

extremising problem for E and L. In particular, it implies that the ex-

tremising problem has only in the Riemannian and Lorentzian case non-

trivial solutions.

Lemma 4.6.9. Let (M, g) be a pseudo-Riemannian manifold, ’Ply Z2

be submanifolds of M without boundary, and -y: [a, b] -- M be a geodesic
which connects Zl with Z2 and intersects both submanifolds orthogo-
nally. If -y is a null geodesic assume in addition that,,7y(a)  Z Ty(a)ZI and

 (b) V T-y(b)Z2-

E’-Y
is positive (respectively, negative) semi-definite then gN if 1 ,Z’

has signature (+ +) (respectively,

(ii) Let E,-y, -L
be the bilinearform

E’-Y restricted to  -L. If TE,’Y,-L
1 1,Z2 1 1, Z2 L

Z, Z2

is positive (respectively, negative) definite then either

- g has signature (+ +) (respectively,
or

- g has signature (- + +) (respectively,
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- 7 is causal (respectively, -y is spacelike or null)
- 53b 52 are spacelike (respectively, 5’b  32 are timelike) at -Y(a),

-y(b)

(iii) If the index form IL,-y
, is positive semi-definite then g has

ZI,Z2

signature (+ +) or

(iv) If the index form
L,-y

is negative semi-definite then either

g has signature (- + +)
7 is timelike

Z1, Z2 are spacelike at -y(a), -y(b)
or

- g has signature +)
- -y is spacelike
- Z1, Z2 are timelike at -y(a), 7(b)

Proof. Let J E R \ 101 and v E TI(a)M be a vector with (v, v) = J. For

every k E N we consider the variation vector field Wk (t) =
1 V (t) sin((t -k

a) where V is the parallel translation of v along -y. This variation
b-a

vector field vanishes at the endpoints of -y and is therefore in El ’Y"’Z’ -

The equation

E’-Y jb1 1, Z2 (Wk, Wk) V Wk, V Wk  + (R(Wk,  )Wk,
a

jb Ir
2

J Cos2 a)
k7r

a,
b-a) b-a)

+
I

(R(V,  ) V,  ) sin2((t -a)
k7r

)))V b - a

implies that for sufficiently large k the integrand has the same sign as 6,

sign(IE"y (Wk, Wk)) = sign(6).,Z2
Assertion (i) follows immediately from 6 = (v, v).
For the rest of the prove we will assume in addition that ("Y(a), v) = 0.

Consequently, we have (Wk (t),  (t)) = 0 for all t E [a, b].

(ii): Assume that IE,’_ ’J- is positive semi-definite and suppos6e either
I,Z2

that

- there is a 2-dimensional subspace of T,,M restricted to which g is

negative definite or that

- there is a I-dimensional subspace restricted to which g is negative
definite and that -y is spacelike.

In both cases there is a vector v E Ty(a)M with J := (v, v) < 0 and

v I  ,,. Hence sign(IE"’Y’-L (Wk, Wk)) = -I and TE,-,, Icannot be positive,Z2 ZI,Z2
semi-definite. This contradicts our assumption, and therefore it follows

that either

- g is Riemannian or



226 4. Pseudo-Riemannian manifolds

- g is Lorentzian and -y is causal.

Since  (a)  TI(a) -"I ( (b)  Ty(b)Z2) and Zi (Zb) is orthogonal to

the submanifold must be spacelike at -y(a) (-y(b)). The proof for negative
semi-definite _TE,-y,l is completely analogous.Z1,Z2

The index form 1 1,Z2 is only defined for spacelike or timelike geode-
sics. For large enough k the relation Wk J_  implies

L,-y
IXE (Wk; Wk) 771EEl"Y

2 Z (Wk7 Wk)
, 2

and therefore Sign( L,-y
-, (Wk, Wk)) = sign(,qJ).1 1, 2

(iii): Assume that g is not definite. Then v can be chosen such that

6 = -q. This implies that L,-y
_,

is not positive semi definite either.1 
1, 2

(iv): There is nothing to prove if (M, g) is a 2-dimensional Lorentzian

manifold. Suppose that either

- g has not signature (- + - - - +) (respectively or that

- dim(M)  : 3 and -y is spacelike (respectively, timelike).

Then v can be chosen such that Tj and sign(
L,-y

1 1, Z2 (Wk) Wk))
sign(,q6) = I for large enough k implies that IL,-y

is not negative semi
Z1,Z2

definite. I

Corollary 4.6.4. Let (M, g) be a Riemannian or a Lorentzian manifold
and 7: [a, b] -- M be a spacelike or timelike geodesic which connects Z,
with Z2 and intersects both submanifolds orthogonally.

(j) If
L, -y

r
is definite then for all variations f: [-e, E] x [a, b] --> M

2

with non-vanishing variation vector field there is a 6 E (0, c) such

that

- L(-y) < L(f(s, Vs E [-6,6] in the Riemannian case, and

- L(7) > L(f(s, Vs E [-6,6] in the Lorentzian case.

ii I L,,y) fiZ1,Z2 is not semi-definite, there exist variations f: [-E, E] x

[a, b] --> M of -y such that

- L(7) > L(f(s, Vs E [-E, El in the Riemannian case, and

- L(-y) < L(f(s, Vs E [-c, c] in the Lorentzian case.

Proof. To prove (i) let f be a variation of -y with non-vanishing variation

vector field  . Since L(f(s, L(-y) + IS2,L,-y ( ’  ) + O(S2) .
The

2 Z15Z2

assertion follows from
L

7 0 and Lemma 4.6.9.

For the proof of (ii) let variation fields with IL"Y

Zl,--2( +’ +) > 0

and
L

< 0. By Lemma 4.6.2 there are variations of -y with1 15 2( _’ _) f
variation vector fields  . Now the assertion follows from L(f(s,
L(-y) + jS2 L

+0(82).2 1 ’I,Z2

In Lemma 4.6.15 below we will extend this result to null geodesics.
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4.6.2 Conjugate and focal points

The existence of conjugate points is closely linked to semi-definiteness of

the index form in the case that Z1, Z2 are points. Before investigating
this relationship we will need to collect a few important facts about

Jacobi vector fields in pseudo-Riemannian manifolds.

Lemma 4.6.10. Let -y: [a, b] ---> M be a geodesic and J, J be Jacobi

fields which vanish at some point to E [a, b]. Then we have (J, V j)
(V J’ j -

Proof. It follows from

V J, (R(J,  )J, +  V J, V J)
(R(j,  ) J, +  V j, V J) J, V j)’

that  J, V j) - V J’ i is constant. Hence the assertion is an imme-

diate consequence of J(to) = i(to) = 0
.

I

We show now that it is possible to split Jacobi fields into a tangential

and into an orthogonal part unless -y is a null geodesic. Moreover, the

tangential part is always trivial.

Lemma 4.6. 11. Let -y: [a, b] --> M be a geodesic,  be a vector field

along -y with  (t) 11  (t) for all t E [a, b], and J be a Jacobi field along -Y.

(i) The vector field  along -y is a Jacobi field if and only if there are

numbers a,,3 with  (t) = (at + 0) (t).
(ii) The following statements are equivalent.

(a) (J(t),  (t)) = 0 for all t E [a, b],
(b) there are two different numbers c, d E [a, b] with (J(c),  (c)) = 0

and (J(d),  (d)) = 0,

(c) there is a number c G [a, b] with (J(c),  (c)) = 0 and

= 0.(V (c) J,  (c) )
’

Proof. (i): If  11  we can write  (t) = O(t) (t). Since R(O(t) , 0

the Jacobi equation reduces to 0 which in turn is

equivalent to  (t) = 0.

(ii): The assertion follows once we have shown that

W(t) = (J(t), (0)

satisfies 0. But this follows from
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-0

V V (J, V 7 J,  ) +  J, V  )
= (V V J,  ) = (-R(J,  ) ,  ) = 0.

I

Corollary 4.6.5. Let y: [a, b] --> M be a geodesic which is timelike or

spacelike and J be a Jacobi field along -y. Then the orthogonal projections
jT to  and J 1

to  J- are also Jacobi fields along -y.

Proof. Without loss of generality assume that ( ,  ) = 77 c- 1, If.
Then jT is given by q (J,  )  . Since 7 is a geodesic we obtain V

1:Y
jT

 ,V J) (V J) T. In the same way we get

V ,7 jT = (V VA
T

From jT we obtain R(jT,  ) = 0 and therefore

,V V jT + R((jT, V V jT =: (V V J)
T

= + (R(J,  ) )T = 0,

where we have used R(., = 0 (cf. Proposition 4.3.1). From J-L

j _ jT and V V jT = 0 we get V V J‘ = V V J. The second

assertion follows now from R(J-L,  ) = R(J,  ) . I

Let -y: [a, b] --> M be a geodesic and J be a Jacobi field which vanishes

at a and c E (a, b). There is a geodesic variation f : (s, t) F-4 f (s, t) of -y

with variation vector field J (cf. Proposition 2.9.1 and Corollary 2.9.1).
These geodesics pass through -y(a) and "intersect -y(c) to first order"

though they may not actually meet this point. Up to second order the

geodesics segments f(s,’)[a,,] have all the same length as 71[a,c]- It is

therefore plausible to expect that 7 will not extremise length beyond
7(c).

A typical example where the geodesics meet in both points y(a) and

-y(c) is given by those great circles of the unit sphere sphere S2 which

intersect both the south pole at -y(a) and the north pole at -y(c). Since

in this example all neighbouring curves intersect -y(c) at an angle differ-

ent from zero, they can be deformed so that they meet 7(b) and have

length shorter than -y (cf. Fig. 4.6.3). This is also true in the general

case, even if the neighbouring geodesics do not actually intersect 7(c)
(cf. Theorem 4.6.1).
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For arbitrary submanifolds Z1, Z2 an analogous statement cannot

be formulated. There is simply no canonical way to compare different

submanifolds along a curve. Hence we cannot speak of a "first point
where a given normal geodesic fails to minimise length between Z, and

Z2". However, we can ask at which point a geodesic -y orthogonal to

a submanifold Z fails to minimise distance from Z. In order to answer

this question we will need to generalise the concept of a pair of conjugate
points to a pair which consists of a submanifold and a point.

Definition 4.6.5. Let Z C M be a submanifold and y: [a, b] --> M be

a geodesic with 7(a) E Z,  (a) E (Ty(a)Z)-L \ Ty(a)Z. The point -y(c) is

called a focal point of Z along -y if there is a Jacobi field J along -y with

(i) J(a) E Ty(a) -", J(C) : -- 0,

(ii)  V J(a), v) + (I(J(a), v),  (a)) = 0 for all v E T- (a) -"-

Observe that in the case that Z is just a single point, condition (ii) is

empty and the definition reduces to the definition of a pair of conjugate

points. The following lemma explains why we also demand condition (ii).

Lemma 4.6.12. Let Z be a submanifold of M and -y: [a, b] --+ M be a

geodesic with -y(a) E Z,  (a) E (T-y(a)Z)-L \ T-y(a)Z-
If f : (- E, E) x [a, b] - M is a variation of -y through geodesics or-

thogonal to Z then the variation vector field  satisfies

(i) is a Jacobi field,

(ii) (a) E T-y (a) Z

(iii)  V, 4(a), v) + (.Y( (a), v),  (a)) = 0 for all v E Ty(a)Z-

Conversely, let  be a vector field along -y which satisfies (i)-(iii). Then

there is a variation f : (- c, E) x [a, b] -- M of -y through geodesics or-

thogonal to Z which has variation vector field  .

Proof. "=*": Assume that f is a variation through normal geodesics.
That  is a Jacobi field follows from Proposition 2.9.1 and property (ii)
follows from f (s, a) c Z for all s. The equation

V, 4 =
f

=

f
V atfs V C%ft

implies that for every vector field V tangent to Z

=0

V) =  f
f

S
S’-’ -  ft,

f

9SV)ft, V =V a (ft, V)

(ft, 1 (fl, V))

holds. This proves (iii).
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Let y: (-c, e) ---> Z be a curve with A(O) =:  (a) and V be

a vector field along p with V(s) I T,(,)Z and V(O) =  (O). We de-

fine f(s,t) = exp(tV(s)) thereby obtaining a variation of -y through
geodesics normal to Z. This variation has variation vector field  if and

onlyif f,(O,a) =  (a) and7 (a)fs =: ’7 (a) - We clearly have f,(O, a) =

A(O) =  (a) for any choice of V. Since ’7 (a)fs = Vfft = ’7A(O)V we

have to choose V such that 17A(O)V = V (a) . To see that this is always

possible, let V(s) = Pj-  (a)+sPj- (cf. Lemma 4.4.5).
YJ[O’S] pqo,s] (7 (a) )

Then we have V(O) =  (a) and, using Lemmas 4.4.4 and 4.4.5,

(a) + P/_’ V (a) )A(O)v = ’7A(O)P1-Ltj[O’S] -tl[0,0] (
 O

+ (7 (a)(’7A(O)Pit1[O’Sj
(-Y(f,, ’), ft)’ + (7 (a) )

where the last inequality follows from

f f
- (1Yll W), ft) = - V OSW’ ft W V’%ft

= (W, Vf atfs)  W,7 (a) )
for all vector fields W which are tangent to Z.

If -y is not a null geodesic then the neighbouring geodesics provided by
Lemma 4.6.12 are of the same causal type as -y. However, if -y is null

then this property is not guaranteed. The following lemma clarifies the

situation for null geodesics.

Lemma 4.6.13. Let Z be a submanifold of M and -y: [a, b] -4 M be a

null geodesic with -y(a) E Z,  (a) E (T-Y(a) Z)
I
\ Ty(a) Z-

Let  be a vector field along -y which satisfies properties (i)-(iii) in

Lemma 4.6.12. Then there is a variation f : (- c, c) x [a, b] -+ M of -y

through null geodesics orthogonal to Z and with variation vector field

if and only if ( (t),  (t)) = 0 for all t E [a, b].

Proof. Assume that f is such a variation through null geodesics. The

f

equation (ft, ft) 0 implies 0 V alft, ft) Vf atf, ft ) and

therefore  (a) ) = 0. Lemma 4.6.12 (ii) and Lemma 4.6.11 (ii)

imply 0 for all t E [a, b] -
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Conversely, assume that  is a vector field along -y which satisfies (i)-
(iii) of Lemma 4.6.12 and is orthogonal to -y. We construct the variation

f as in the proof of Lemma 4.6.12 but now we will choose V so that it is

null at every point of /,t. To do so, let s  -4 W(s) E Ty(,,)M be a curve with

W(O) =  (a) and (W(s), W(s)) = 0 for all s. As in the proof of Lemma

4.6.12 let M: s  -4 M(s) E Z be a curve with tt(O) = -y(a) and A(O) =

 (a). We set V(s) = P’ W(s). Clearly, V(s) is normal to Z at all s
AJ[O’S]

and VA (V (s), V(s)) = 2 (VAV(s), V(s) 2 ( (V V(s)) V(s)

0 implies (V(s), V(s)) = 0 for all s. Hence f (s, t) = exp(W(s)) is a

variation of -y through null geodesics normal to Z. We have to choose W

such that the variation vector field of f coincides with  . Since we have

f,(0, a) = #(0) =  (a) we only have to arrange W such that

f
17 at f, (0, a) = 174.

From - (I(f, .), ft)o = (V*) )
,

(cf. proof of Lemma 4.6.12) we

obtain

f

atfs)
(0,a)

= (
f

’9"ft)
(0,a) (0,a)

= (VAV(S))-L(O,a) - (I(A (0), .), V(a))

(VAV(’5))-L(O,a) + (7 (a) )
T

I
W(S)(VA(O) (P J[O’S] + (V (a)

PI + P-L
d(VA( /-’1 [0, S] W(O)) 18=0 AJ[O’S] ( FsW(S)) JS=O)

+ (7 (a)  )
T

d
W(8) + (7 (a) )Tis- )

JS=O

We have (V4,  (a) ) = 0 since  is orthogonal to -y (Lemma 4.6.11).

Since  (a) I Ty(a) I’ we get therefore ( (V4) ,  (a)) = 0. The tangent

space of the null cone C-y(a) C Ty(a)M at the point  (a) is just fX E

T-y(a) : ( (a), X) = 01. Hence (V4) is a tangent vector to C-y(a) at

I

 (a) and we can choose W such that d W)
I 8=0 V4) .

But this
ds

f

implies V qtfs (0, a) = V4 and we are done.
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Fig. 4.6.3. Conjugate points on the

sphere

We need another technical lemma analogous to Lemma 4.6.10

Lemma 4.6.14. Let Z be a pseudo-Riemannian submanifold ofM and

-y: [a, b] --+ M be a geodesic which intersects Z orthogonally at -/(a). If

J1, J2 are Jacobi fields which satisfy Ji (a) C- Ty(a) Z and (17 Ji (a), v) +
(I(Ji (a), v),  (a)) == 0 for all v E Ty(a),E, then J1, J2 satisfy

 J1 (t) , V (t) J2 V (t) JI i J2 (t)

for all t E [a, b].

Proof. Rom the proof of Lemma 4.6. 10 we know

v
 J1) J2 ) -  JI i V J2 ) ) 0

-

Hence the assertion follows from

(V (a)jl, J2(a) -  Ji(a),7 (a)h 
(I(JI (a), J2 (a)),  (a)) +  I(J2 (a), J1 (a)),  (a)) = 0.

I

We can now present a theorem which links focal points to length extrem-

ising geodesics.

Theorem 4.6.1. Let (M, g) be a Riemannian or a Lorentzian manifold,
Z be a Riemannian submanifold, and -y: [a, b] --* M be a geodesic which

intersects Z orthogonally at -y(a). If (M, g) is Lorentzian we also assume

that -y is timelike
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(i) The submanifold Z does not have focal points along -y if and only
if

L,-ythe index form is positive semi-definite in the Rieman-

nian and negative semi-definite in the Lorentzian case.

I L, -yf 1 ,J-y(b)} (VI V) = 0, then there exists a function vo with V

vo , i.e., V corresponds to a reparameterisation of  .
(ii) The point -y(b) is the only focal point of Z along -y if and only if
- the index form is positive semi-definite in the Riemannian and

negative semi-definite in the Lorentzian case.

- there is a non-vanishing vector field V: [a, b] ---+ M along 7 which

satisfies
L,-y

(V V) = 0 and has values in1 ,  ,y (b)II

(iii) There is a focal point -y(c) of Z along -y with c < b if and only
if the index form is not semi-definite.

Proof. Observe that the cases (i)-(iii) are mutually exclusive and com-

prise all possibilities. Hence it is sufficient to prove the "if"-parts only.
(i): Since there are no focal points of Z along -y there are n -

linearly independent Jacobi fields Jj: [a, b] -4 TM which

(a) are everywhere perpendicular to  ,

(b) satisfy Ji(a) E T,,(,,)Z and V Ji (a), v ) + (.ff (Ji (a), v),  (a)) == 0

for all v G T, (a)Z-
(c) form a basis of -y(t)’ for every parameter value t E (a, b].

Let V be a variation vector field which is tangent to Z at a and

vanishes at b. Because of (c) there are smooth functions v’: (a, b] -4 R

(i = 0, . . . ,
n - 1) with Vvo + F_’ v’Ji. We will now calculate

V V--L, V V-L +  R(V-L, V 1

,

YVI V V
I

,
j)k jk + vkV j,

(V Vl, VkV jk) + (i)i Ji + viV Ji)  bkA

(V V I

, VkV jk) +  ViV Ji,’ kJk) + (biJi,  IkJk)
Lemma4.6.14

VV-L,VkV,jk ) +  ViJi,i)kV Jk)
+ (I)i Ji 7 i)k A)

=  V V_L,VkV jk) +  Vi Ji, V (VkV Jk)
- (vi Ji 7 VkV V Jk ) + (i)i Ji, i)k A)

= V V_L, VkV jk ) + (V’ , R(V

+ (70i, i)kJk) ,
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where in the last equation we have used that Jk are Jacobi fields. Hence

we get

(V, V--, 17 V + (R(V--,  ) V-L, (j, Ji, i)i ii) +  VJ_’ VkV jk

Assume for the moment that the functions v
k have continuous extensions

to a. Then (b), V(b) = 0, V-L(a) = V(a) e Ty(a)Z, and the fact that all

v’ have bounded extensions to a imply

fa
b

(V_L’ VkV Jk dt = _ (VI, VkV jk )t=a
=  I(V(a), vk(a) Jk),  (a)

Writing 77 we obtain

b

IL,-t (V V) V V’
, V V’ ) + (R(V-L,  )V-L,  )) dt

Zj-y(b)j I ((  

(ff(V (a), V(a)),  (a))
6

= 77 (b’Ji,  b’Jj) dt + 77  ff(V (a), Vk (a) Jk),  (a))
’a,

- 77 (1(V(a), V(a)),  (a))

= 77 f (b’Jj,,b’Jj) dt.

’a’,

Since -/ is timelike in the Lorentzian case the vector field V is always

spacelike and we can conclude that 771
L,-y

(V, V) is semi-definite. Fur-
Zj-y(b)l

thermore, L 0 if and only if all vi are constant, which771",’fy- (b) I (VI V)

in turn implies that V-L vanishes since it vanishes at b.

We still have to show that the functions v
k have continuous extensions

to a. There are dim(Z) vectors f Jil (a),.. ., (a)j which form a

basis of Ty(a)Z. This follows from Lemma 4.6.12 since it is possible to

construct normal geodesic variations of  in any direction tangential
to Z. We can also assume that Jk(a) = 0 for all k  till ... 1 idim(z) I
because otherwise we could subtract a suitable linear combination of the

Ji, from Jk. For each t we decompose V(t) into a part U tangential to

spant Ji, (t), . . . ji
diiii(E) (t) I and a part & tangential to spanjjk(t) : k V

fill ... 1 idim(Z) I -
It is clear that all v" have smooth extensions to a since

f ji, (t), . . . , Jj,1,1.(z) (t) I are linearly independent for all t (E [a, b]. Since

& =V-v"Ji, andjk (k V fill ... 1 idim(Z) 1) are smooth and vanish at a

there are vector fields W, Kk such that & = (t - a)W and Jk = (t - a)Kk.
These vector fields satisfy W(a) = V U(a) and Kk(a) = V jk(a). From

Cj-L = Vkjk we get W-L = VkKk, and from the linear independence of
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Jk (t) I (t G (a, bl) and the fact that Jk (a) == 0 we infer that the vector

fields Kk are linearly independent near a. Hence there are smooth one

forms w’ along -/ with w (Kk) = J’ near a. Consequently, the function
k

Vk = wk(W.L) (near a) has a smooth extension to a.

(ii): Let f bi 1 -4 b be a strictly monotonically increasing sequence

and V be a vector field along 7 which is tangent to Z at a and vanishes

at b. Since V vanishes at b, there exists a well defined vector field W

such that V(t) = (b - t)W(t). Let Vi be the piecewise differentiable

vector field given by Vi (t) = (bi - t)W(t) for t cz [a, bi) and Vi (t) = 0

for t E [bi, b]. This gives a sequence of piecewise smooth vector fields

fVil with Vi[,,,bi) = VI[a,bi] and VI[bi,b] == 0. Since b is the first conjugate

point part (i) of the theorem implies that _TL, - (V; Vi)  : 0. Hence
Z,f-y(b)j 17

TL,-y (V V L,-Y 97,L,,y -

4i --- oo) implies that) __4 (V V) (i’Z,J-y(b)J 11 ’ ,J-y(b)j I Z,I-y(b)j
’s

positive serni-definite. To see that there exist non-trivial variations with

vanishing index form let J be a Jacobi field orthogonal to -y according
to Definition 4.6.5. Since J = JJ- we have

L,-y

-Y
7 fb V J)1 ,J (J J) + (R(J,  ) J,  )) dt

a

 .Y(J(a), J(a)),  (a))
=0 since J is a Jacobi field

b

 ,V J).
I

a.

J, -  V V J, J) - (R(J,,:y) , J) dtf

n (I(J(a), J(a)),  (a))

77 (I(J(a), J(a)),  (a)) -  7  I(J(a), J(a)),  (a)) = 0

(iii): Let c E (a, b) be the first focal point of Z along -y and t

J be a non-vanishing Jacobi field according to Definition 4.6.5. Then

limt, V J(t) 74- 0 and the piecewise smooth vector field

V(t)  J(t) for t E [a, c],
0 for t cz (c, b]

satisfies zAV V(c) limt,c V J(t) : 4 0. Let J > 0 and W be a vector

field along -y which satisfies

W(a) W(b)=O, (W(t), (t))=O,  W(c),AV V(c))>O.

By the definition of J we have IL _[L,-y,7 0 and
.33, JY (b) I (VI V) I_Y(b)J(V) W)

-217 (,AV(c), W(c)). This in turn implies

ILI,’Y
(b) I

(V + 6WI V + 6W)&Y
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L,,y L
+ 621L,-y= I ’O(b) I (Y) V) + 26I "7 (b) I (VI W) b) I (W1 W)1-Y Z,{,Y(

= -2,q6 (.6V(c), W(c)) + 62,L,-y (W W).Zj-y(b)l 7

Hence for J sufficiently small we obtain sign(IL,-y (V+6W, V+JW))Zj-y(b)j

sign(-qJ). Since we can replace W by -W this equation implies that

IL;-y fails to be semi-definite.
Zj-y(b)j

In order to have an analogue of Theorem 4.6.1 for null geodesics we need

to use the energy index form.

Theorem 4.6.2. Let (M, g) be a Riemannian or a Lorentzian mani-

fold, Z be a Riemannian submanifold, and -y: [a, b] --+ M be a space-

like (Riemannian case) or causal (Lorentzian case) geodesic with  (a)

(T-y (a) -")
I

-

(i) The submanifold Z does not have focal points along - if and only

if
- the index form

E -y, I itive semi-definite,’ ,’J-y(b)j  S POS

-

E,,y,I (V V) = 0 implies that there exists a function vo with1 j-y(b)j I

V = vo , i.e., V corresponds to a reparameterisation of

(ii) The point -y(b) is the only focal point of Z along -y if and only if

- the index form
E"L .

emi-definite and’ &y(b)j ZS S

- there is a non-vanishing vector field V: [a, b] -* M along -y which

satisfies IE‘Y, -(Lb, I (V V) = 0 and has values in
Z,f-y(b)j I

(iii) There is a focal point -y(c) of Z along -y with c < b if and only

if the index form
E,-y,-L

is not semi-definite., ,J-y(b)j

Proof. If -y is timelike (in the Lorentzian case) or spacelike (in the Rie-

mannian case) then the proof is completely analogous to the proof of

Theorem 4.6.1. We can therefore restrict to the case that -y is a null

geodesic and Z is spacelike.

(i): Again, there are Jacobi vector fields which satisfy assertions (a)-

(c) in the proof of Theorem 4.6.1 (i). Since every Jacobi field satisfying

(a)-(c) must be a linear combination of the Ji we can assume without

loss of generality that J1 (t) = t (t). Exactly as in the proof of Theorem

4.6.1 we obtain for every vector field V along -y with V(a) E Ty(",)z and

V(b) == 0

E,-Y,-L (V V) = jb (,b’Ji,  b’Jj) dt,
{-y (b) I

a

where t  -4 v’(t) are functions defined by V(t) = En-1 v’(t) Ji (t). The
i=1

equation (Ji, 0 implies that each Ji must be spacelike or null,

_rE,,y,-L > 0. Moreover, the Jacobi field Ji is spacelike forwhence E’{-y(b)j(V1V)
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i > 2. By the linear independence of the Jacobi fields at every point a

we have
E ’Y,-L

> 0 unless i)2 i)n-1 = 0. Since V(b) 0
-y (b) I

(VI V)

the equation
E,-y,l

(V V) = 0 implies that V2 Vn-1 = 0 and’ ,J-y(b)j 7

therefore V = v’J1 which is parallel to

The proof of assertions (ii) and (iii) is completely analogous to the

proof of Theorem 4.6.1 (ii), (iii). I

We can now extend Corollary 4.6.4 to null geodesics in the case that one

of the submanifolds Z1, Z2 degenerates to a point. This is achieved by

showing that there is a variation of -/ through timelike curves from the

spacelike submanifold Z to -1(b) if i ot semi-definite. Observe
Z,J-y(b)J

’S 11

that we cannot use the same argument as in Corollary 4.6.4. While we

would obtain the existence of a variation f with E(f(s, .)) < 0 for all 8,

it would not be clear that these varied curves are everywhere timelikel.

Lemma 4.6.15. Let (M, g) be a Lorentz manifold, Z be a spacelike sub-

manifold, and -y: [a, b] M be a null geodesics which intersects Z or-

E, -y, I
thogonally. ff ,J-y(b)j is not semi-definite then there is a timelike curve

from Z to -y(b) arbitrarily close to -y-

Proof. The strategy of proof is as follows. Theorem 4.6.2 implies that

there is a first focal point 7(c) (c E (a, b)) of Z along -y. For some small

J c (0, b - c) we will construct two vector fields  (t) and A(t) along

71(a,c+61 such that for every variation f of -y with f,(O,t) =  (t) and

f

(0, t) f,
= A(t) we have (ft (t, s), ft (t, s)) < 0 for s > 0 sufficientlyV

small. We will show that there is such a variation which, in addition,

satisfies f (s, a) E Z and f (s, c + 6) = 7(c + 6) for all s. It is then possible

to join Z and -y(c + 6) by a timelike curve arbitrarily close to -Y. This

curve can in turn be slightly deformed in order to arrive at a timelike

curve from Z to -y(b).
Observe that A cannot be chosen completely independently of  . In

f

fact, at -y(a) E Z we have must have A’ = (V a ’f’) _Y(h I LI)

1( ,  ). From the proof Lemma 4.6.7 we see that

2
ft ft V atfs, V V at V a ’fs

2 ds atf,’) + (
f f

ft)I

(
d’

( , ))
1 ’=()

f f

+ (R(f,, ft)f, ft) .

 Vf at
Vf atfs + R(f,, ft)ft, f,)

+  
,

at f", f. )’ +  
f f

, ft)V V’9t V a’fs
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holds. If we can construct -vector fields  , A with

V, V  + R( ,  ) ,  )
?

V A,  >0_ V4, __ ) > 0

then any corresponding variation f satisfies (ft, ft) < 0 for small 8 > 0.

Let -y(c) (c c (a, b)) be the first focal point of Z along -y and let J

be a Jacobi field according to Definition 4.6.5. It follows from Lemma

4.6-11 (ii) that this Jacobi field is everywhere orthogonal to -Y.
If there would be a point d C (a, c) with J(d) = a- (d) then the Jacobi

field J(t) - t
’  (t) would have a zero at d and satisfy all the conditionsd

of Definition 4.6.5. Hence there would be a focal point -y(d) of Z along
-y before -y(c) in contradiction to the definition of c. We have therefore

shown that J(t) E ( (t))-L \ R (t) for all t c- (a, c).
The derivative of J at c satisfies V.,J(c) E T7(,)M \ R (c) since J

is non-trivial and not parallel to  . This implies that there is a J > 0

such that c is the only point in (a, c + J] where J is tangent to - . Hence

there exists a spacelike vector field U along -y with value in ( )’ and a

function  p: [a, b] -4 R such that

- (U(t), U(t)) = I for all t E [a, c +
- J(t) =  p(t)U(t) for allt E [a,c+J],
- W(t) >0 for alltE (a,c).
- W(t) < 0 for all t E (c, c +

We will now construct  by slightly stretching U. Let  b: [a, c + J] --> R

be a function and consider 6 = (W + O)U. From

V V4 + R( , ffzy = V V, (OU) + OR(U,

= OU + 20V U + O(V V U + R(U,

We get

(V V4 + R( ,  ) ,  ) = ( o + 0) ( + 0 (V V, U + R(U,  ) , U)) -

There is a number A 1 > 0 such that - (A1) 2 <(V V U + R(U,  ) , U)
It

for all t E [a, c + J]. Let A2 > 0 and 0(t) = A2(eAl’ - e,\ la) .
Then we

obtain

+ 0(17 17 U + R(U,  ) , U)

0 ((/\1)2 +  V V U + R(U, U)) + A2(A1)2eAla

A2 (AI)2e\la > 0

for all t E (a, c+ J) .
We set A2 = -W(c+ J)/(e’\, (’+6) - e-\Ia) which is pos-

itive. Observe that 0(a) = 0, W(c + 5) + 0(c+ J) = 0, and W(t) + 0(t) > 0
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for all t G (a, c]. We can assume that c+6 is the first zero after c since oth-

erwise we could replace 6 by a smaller number. To summarise, the vector

field  satisfies  (a) = J(a),  (c+J) = 0, and V
I yV4 + R( ,  ) ,  ) > 0

for all t E (a, c + J). We will now construct the acceleration vector field

A.

There is a basis el, . . . , e,,- 1 of ( (a))
-L

such that

(i) e,,-I =  (a)
(h) spanjej,..., e-dim(E)l = T-y(.)-,
(iii) (ei, ek) = 6ik for all i E n - 21, k E n - 11.

Let en E Ty(a)M be the null vector with ,e, en- 1) = -I and (e, ej) = 0

for all i E fl,...,n-21. We denote by ei(t) (i E fl,...’nj) the parallel

transport of ej along -y (i c- There are numbers  ,-k (k G

fdim(Z) + 1, . . . , nj) such that 1( (a),  (a)) = En kek. Let
k=dim(Z)+l

n-1

A(t) I:
C + 6 t

ek, - y(t)eni
k=dim(Z)+l

+

where

C + j
A(t) +

 T  

t

c + 6 a

We have y(a) =: (I( a i W i  (a)) -n and

P(C + + V (C + 6)2

=0

= (W + *)IC+jP + OIC+8 = 0.

Hence the vector field A satisfies A(a) = A(a)j- = ff( a, and A(c +

J) = 0. We will now show that V A,  ) + V  V  ,  ) < 0
.
We calcu-

late

V A,
n-1

V (C+J-t  kek) - V (Pen) ) e-n- 1E
c + a

k=dim(Z)+l

n-1

(C+6-t)’> ]
+ J

ek - Aeni en-1 A

k=dim(Z +1

( a i W i  (a)) + ( a 7 (a)
c + J - a

and our claim follows from
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+

= (1(Ja, J,),  (a)) +2 V (a) ( , 0

(If7 OSf" ft)
I (a, 0)

+ 0(a) ( (a) +(a))

-  fS, Vftf,  
I (a,O)

+ 0(a) ( (a) +  (a))

= -O(a) (a) + O(a)( (a) +  (a)) = O(a) (a) > 0.

We will now show that there is a variation f x [a, c + J] --+ M

such that

1. f, (0, t) = J(t), VfS (0, t) fs
= A(t) for all t E [a, c +

2. f(s,a) E Zfor all sE

3. f (s, c + J) = -y(c + 6) for all s E (-c, c).

By construction of  and A such a variation must satisfy (ft, ft) < 0

for all s  4 0. Hence we will obtain timelike curves from Z to -y(c + J)
which are arbitrarily close to -y which in turn implies that, there also exist

timelike curves from Z to -y(b).
Let p: (-E, c) be a curve in Z with p(O) = -y(a), A(O) =  (a), and

VA(O)A = 0 where V is the Levi-Civita connection of Z. Let f be a

variation such that j(s, a) = p(s) and j(s, c + J) = 7(c + 6) for all

s c (- E, E). For E sufficiently small there is a smooth map V: (s, t)  -*

V(s,t) E Ty(t)M with expY(t)(Z(s,t)) = j(s,t), where Z(O,t) = 07(t).
We will now modify this variation so that the modified variation has

variation vector field  and acceleration vector field A. Restricting the

equation 9, exp(Z(s, t)) = Tz(,,t) expY(t) -!iZ(s, t) to s = 0 implies that
ds

the variation vector field  of j is given by (jd- Z) (O’t).
In order to cal-

ds

culate the acceleration vector field A let fx1, . . . I X" Y1 y’ I be a

coordinate system of TM such that yk (V) = Vk for any vector v. For any

given v E TxM let A be the geodesic given by A(s) = exp,,(sv). Then the

calculation

0 =
d2

(Ai (8)) + Fik  j (S)  k (S)
dS2 j

=

d2
(SV)) + pik  j (S)  k (S)dS2(expx j

a2
k k(exp,,)’ v v + rj’k A3 (S) A (S)

implies
a2

(exp.,)’ (0) = -Fjk(x). If follows that the equation’j9Y_ IyIF

A = (V c), expY(t) (Z))
I (O’t)

= ( Z)
(O’t)

dS2



4.6 Length and energy functionals 241

holds and completely analogously that the variation

Z(s, t) +s(6(t) _  (t)) +
S2

f (s, t) = expY(t) 2
(A(t)- A(t))

has variation vector field 6 and acceleration vector field A. By construc-

tion, each of the curves t 1--4 f (s, t) starts in Z and ends in -y(c + 6).

4.6.3 Existence of focal points

The existence of focal points depends on three factors, the curvature of

the pseudo-Riemannian manifold near -y, the length of -y, and the shape
of the submanifold Z. A typical result is the following.

Proposition 4.6.1. Let Z be a spacelike hypersurface and -y: [a, b]
M be a geodesic with ( ,  ) = q E I- 1, 11 and  (a) E (Ty(a) Z)

I

- If

Ric( (t),  (t)) > 0 for all t and the mean curvature vector field H of Z

satisfies (H-Y(a),  (a)) =: c > 0, then there is a focal point of Z along -Y

before -y(a + 1/c), provided c > 11(b - a).

Proof. Let fel,. ..’ en-11 be a basis of Ty(a)Z and Ej the parallel trans-

lation of ej along -y. The vector field  j (t) := (1 + ca - ct)Ej (t) vanishes

at a + 11c and is tangent to Z at t = a. Since

n-1

,L,-y

C + ja+l/c (I + ca - Ct)2 R(Ej,  )Ej,  ) dtE(
n’

i=1 a

- ( (a), I(Ei (a), Ej (a)))

a+l/c

=,q((n - I)C- 1 (1 + ca _ ct) 2Ric (,:y (t),  (t)) dt

- ( (a), (n - I)H-y(a))
a+1/c

(I + ca _ Ct)2Ric( (t),  (t)) dt
a

we have found a vector field  with negative index in the Riemannian

and positive index in the Lorentzian case. If follows that IL,-y

Z&Y(a+1/c)j
is semi-definite or indefinite and therefore the existence of a focal point
before -y(a + 11c) I
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The inequality given in Proposition 4.6.1 is sharp. Consider a sphere
of radius r and with inner normal n. Then its mean curvature vector

field is given by H , = in. The geodesic -y with  (a) = n,, satisfies

(H,  (a)) = -1 and intersects the centre of the sphere at -Y(a+r). Clearly,
r

the centre is the first focal point of the sphere along -y.

There is an analogue of Proposition 4.6.1 for null geodesics and space-

like submanifolds of codimension 2. This analogue will become important
in Chap. 9 on singularities in general relativity.

Proposition 4.6.2. Let Z be a spacelike submanifold of dimension n-2

and -y: [a, b] --4 b be a null geodesic with  (a) E (T-Y (a) Z) If

Ric ( (t),  (t)) > 0

for all t and the mean curvature vector field H of Z satisfies

(H-y(a),  (a)) =: c > 0,

then there is a focal point of Z along 7 before 7(a + 11c), provided c >

11(b - a).

Proof. The proof is analogous to the proof of Proposition 4.6.1. We

choose a basis jej, -, en-21 Of T-y(a)Z. There are a spacelike unit vector

en-, and a timelike unit vector en, both orthogonal to Z such that

 (a) = en-1 + e, We denote the parallel translation of ek along -y by
Ek. Then we have

n-2

Ric( ,  ) = E (R(Ei,  ) , Ej) + En-1) - (R(En,  ) , En)
i=1

n-2

= 1: (R(Ei,  ) , Ej) +  R(En-j, En)E,,, En-1)
i=1

- (R(En, En- I)En- 1, En)
n-2

= E (R(Ei, Ej).

This implies

n-3

E,-y, I

c

- ct) Ej, (I + ca - ct) Ej),),((l + ca
Z,I-y(a+l/

n-I

C + fa+1/c (1 + ca Ct)2  R(Ej,  )Ej,  ) dt

a

(a), I(Ei (a), Ej (a)))
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(n - I)c - ja+l/c(I + ca - Ct) 2Ric( (t),  (t)) dt
n’a

  (a), (n - I)H-y(a))
a+1/c

(I + ca _ Ct)2Ric( (t),  (t)) dt.
a

Hence 1’, is not positive semi-definite and therefore there is a

focal point before 7(a + 11c).

It is also possible to prove the existence of conjugate points of geodesics 7,

if they are sufficiently long and if suitable curvature conditions hold along

-y (cf. Proposition 4.6.3 below). This result is central to the singularity
theorem which is presented in Chap. 9. Since in the case of a single

geodesic we do not have initial conditions which guarantee focusing in

one direction, the proof of Proposition 4.6.3 will be much more delicate

than the proof of Propositions 4.6.1 and 4.6.2. The rest of this section

will be devoted to proving the following proposition:8

Proposition 4.6.3. Let (M,g) be a Riemannian or Lorentzian mani-

fold and -y be a complete geodesic which is spacelike in the Riemannian

and causal in the Lorentzian case. If Ric( (t),  (t)) > 0 for all t and if
there is a to such that the map

R: ( (to))
J-

-4 ( (to))
1

,
v  -4 Rv R(v,

is not identically zero. Then -y has a pair of conjugate points.

The proof of this proposition requires more results from the theory of

conjugate points.
We have seen before that there is an (n - l)-dimensional subspace

of Jacobi fields along -y which have values in ( )’ and vanish at a given

point. In the case that -y is a null geodesic, there is always a linear com-

binations of these Jacobi fields which is equal to the trivial Jacobi field

t  --* (at + 0) (t). This uninteresting subspace disappears if one considers

the factor space ( (t)) -L /R (t) = f [v] : v E (,,:y (t)) J-, v - w # v - w I I
 (t)j instead of the orthogonal complement ( (t))-L. This space coincides

with the orthogonal complement if -y is timelike or spacelike. If -Y is a null

geodesic then working with the factor space has two advantages: As we

have indicated above, [(at + 0) (t)] = [0]. More importantly, the metric

g induces a metric [g] on which is positive definite instead

of degenerate.

We follow closely the presentation in (Beem and Ehrlich 1981). There is

also a much shorter proof in (Hawking and Ellis 1973) which I failed to

understand.
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Definition 4.6.6. Let -y: [a, b] --> M be a geodesic and t E [a, b]. Two

vectors V, W E (t)) -L
are called equivalent, v - w, if there is a number

a C- R with v w + a (t). We denote the space of equivalence classes

[v] : v E ( (t)) I by [ (t)] ’ and set [ ] -L
= UtE [a,b] NO]

_L
*

A map [A](t): [ (t)]’ x ... x [ (t)]
-L
x (mol -L)

*

x ... x (mol
R along -y which is linear in each of its entries is called a tensor class

along 7.

From the definition it is clear that any tensor A of ( (t))-L induces a

tensor class [A] at t via

[A]([vi], . -
-, [v,,’, k,,’], -, [ o’]) = A(vi.... i vs, Wil ...

I (Pr)

where cp’ is defined by [W’]([v]) = V’i,(v) for all v E ( (t))-L (In particular,
w ( ) = 0). Conversely, any tensor class is induced by a tensor in this

way.

The metric and the covariant derivative in direction  induce analo-

gous objects for tensor classes.

Lemma 4.6.16. Let -y be a geodesic and [A] be a tensor class along
andAbe any tensor field along -y with [A]= [A]. Then [A] := V A is

well defined.

If -y is a null geodesic then the metric [g]: [ftL x R, [v, w]  -4

[g] Qv], [w]) := g (v, w) is well defined and positive definite.
The operator [R]: [ (t)]-L -4 [ (t)]-L, [v] 1--4 [R(v, ) ] is well defined.

Proof. For any one-form W satisfying W( ) 0 we have

(Vxt),P) Mt) + f(tMt))

V (t) (w(V (t) + fW (W) - (V (t) (VW + fW W)

V (t)(w(V(W)
- W (V (t)V(t) + df (t) (t) + fV (t) (t))
V (t)MVW) - w (Vxt)V(t)) = V WMWI

where we have used that V,  = 0. For any vector field V along -y we

have [V, (V(t) + f(t) (t))] = [V, V(t) + df(ffy + fV  ] == [V V(t)]-
Hence the first assertion holds for 1-forms, vector fields, and (trivially)
for functions along -y. Since V is a derivation this proves the first claim.

The second claim follows since there is a basis el, . . . , e,,- 1 of (t)) -L

such that g(ei,ej) = 6ij for i,j E 11,...’n - 21 and 9(en-liek) 0 for

k E n - 11.
The third assertion is a consequence of R( , 0.
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Definition 4.6.7. A Jacobi tensor class is a tensor class [A]:
[ ] J-

along 7 for which [A]+ [R] [A] = [01 holds.

Lemma 4.6.17. A tensor class [A]: [ ]J- --> [ ]’ along -y is a Jacobi

tensor class if and only there is a tensor field A along -y which induces

[A] and has the property that t i-+ AV(t) is a Jacobi field for every parallel
vector field V with values in ( )

’
.

Proof. Suppose that A is a tensor field along -y such that AV E ( )’ is a

Jacobi field for any parallel vector field V with values in It follows

immediately from

17 V [A] + [R] [A]) [VI = [ (V V A) V] + [R(AV,

= [17 V (AV) + R(AV,  ) )]
that [A] is then a Jacobi tensor class. Conversely observe that there

are exactly (2n - 2) linearly independent Jacobi vector fields Ji along
which have values in ( ) -L. Let fEl, . . . , E, I be a parallel frame of

and define the tensor field A: by Av = E’_1 AiviJji,j=i i

where v = T,’-’v’Ej and the Aj are (constant) real numbers. It is

clear that for every parallel vector field V G ( )J- the vector field AV

is a Jacobi field with values in ( )-L. Hence [A] is a Jacobi tensor class.

Since the differential equation [A] + [R][A] = 0 implies that the space of

Jacobi tensor fields is 4(n - 1)2-dimensional if -/ is timelike or spacelike
and 4(n - 2)2-dimensional if -y is null every Jacobi tensor field can be

generated by some tensor field A as constructed above. I

It is clear from the proof of Lemma 4.6.17 that the columns of a Jacobi

tensor class with respect to a parallel basis of ( (t))-L are just Jacobi

fields expressed in this basis.

Corollary 4.6.6. Let -/: [a, b] -- M be a geodesic and to, t, E

[a, b] (to =A ti).

(i) For any pair of tensor classes

[Ao]: [,,:y(to)]J- -4 [ (to)]-L ,[Aol: [ (to)] [ (to)]--L

there is a unique Jacobi tensor class [A] with [A](to) = [Ao] and

[A] (to) = Ao;

(ii) Assume that -y does not have conjugate points and let

[Ao]: [, /(to)]J- --+ [ (to)]J-, [A,]:. [ (ti)]J- ---+ [ (ti)]-J-

be a given pair of tensor classes. Then there is a unique Jacobi

tensor class [A] with [A](to) = [Aol and [A](ti) = [Afl.
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Proof The assertions follow immediately from Lemma 4.6.11 and Propo-
sitions 2.9.2, 2.9.4. 1

The following lemma is clear from the definitions and the fact that a

non-vanishing Jacobi field which is parallel to  has at most one zero:

Lemma 4.6.18. Let -y be a geodesic. Two points -y(c), -y(d) are conju-

gate if and only if the Jacobi tensor class [A] which satisfies [A](c) == [0],
[A]](c) = id is singular at d.

Definition 4.6.8. Let -y be a geodesic and [B](t): [ (t)]-L -+ [ (t)]J- be

a tensor class along -y. Then the adjoint of [B] with respect to [g].Y(t) is

denoted by [B] *

-

Lemma 4.6.19. Let [A] be a Jacobi tensor class along a geodesic

-y: [a, b] --+ M and assume that there is a number to E [a, b] with

[A] (to) = [0]. If [A] is non-singular at t then the tensor class [A] [A] -I is

self-adjoint at all t.

Proof. Let V, W be parallel vector fields along -y with values in ( )--L. The
equations

’7 (  AV, 17 AW) -  17 AV, AW)
= (17 AV, 17 AW) +  AV, V V AW)
- (17 17 AV, AW) -  17 AV, 17 AW)

= (-R(AV,  ) , AW) - (AV, -R(AW,  ) ) =: 0

and A(to) = 0 imply that (Av, 17 Aw 17 Av, Aw) for all vectors

v, w E ( )-L. It follows that

17 AA‘v,w (17 A(A’v),A(A-1w))
(A(A-1v), 17 A(A-lw)
 v, V AA-lw) .

The self-adjoint tensor class [A][A]-’ has a direct geometrical inter-

pretation in terms of congruences of geodesics. Let -y: 1a,b] -4 M be

a spacelike (in the Riemannian case) or timelike (if M is Lorentzian)
geodesic9 and f: R’-’ x R -4 M, (81,...,sn-l’t) , f(81 ) I * I 1 8n-1, t)

’ The interpretation in for lightlike geodesics is slightly less direct.
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be a smooth (n - 1)-parameter geodesic variation of -y. We may assume

that each geodesic t i-+ f (s’, . . . ,
sn- 1, t) satisfies (ft, ft) E I- 1, 11 and

that at t a the vectors I ft, fi, . . . , f,. - 1 1 are linearly independent.
Then U ft(s’,...’ sn-1, t) is a well defined vector field near -y(a).
The covariant derivative of U geometric properties of our congruence of

geodesics. The function 0 = div(U) measures the divergence of neigh-

bouring geodesics. Analogously, w = dO is the infinitesimal rotation

and a, the traceless, symmetric part of VU, the infinitesimal, volume

preserving distortion of neighbouring geodesics. At (sl, . . . ,
sn- 1) = 0

we can recover this information in terms of Jacobi classes.

The Jacobi field fi satisfies

Vft Us, ft) =  Vft fs, ft) =  VfS ft, ft ) = 0.

Hence (fi.(0,...,O, a),  (a)) = 0 implies =O for all

t E [a, b]. Since we can replace the parameter t by t + h(sl, . . . ,
sn- I ) I

where h is an arbitrary function, we can always parameterise our geodesics
such that fk(O,..., 0, t) E ( (t))

1 for all k and t. Let fEj(t)jj=j,...’n-1
be a orthonormal basis of ( )J- which is parallel along -/ and denote by
A: ( )’ ---> ( )’ the tensor field alongy that maps Ej into fi, (0.... 1 01 t).
It follows that [A] is a Jacobi tensor class and that

(V A)A-lf,i = (V A)Ej V (AEj) = Vftfi = Vfsift = VfSi
U.

Since the vector fields ffl, . f,,,,, I span ( )--L we conclude that VvU
(V’:YA)A-1v for all v E  -J-. This motivates the following definition.

Definition 4.6.9. Let [A] be a Jacobi tensor class along the geodesic -y.

Then the expansion 0 of [A] is defined by

0 = trQA] [A]
- 1),

the vorticity tensor w of [A] by

2

and its shear tensor a by

0(t)([,4][A]-’ + ([A][A ;T-- if E
I
id

([A] [A] + ([A] [A]
0 id if 0.

2 n-2

The following lemma implies that O(t) tr([AI [A]-’) diverges where A

is singular.
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Lemma 4.6.20. For any a Jacobi vector class [A] we have

0 -_ -(det([A]))*,
det([A])

where det is any parallel determinant function. (In particular, one can

choose the determinant function induced by the metric [g]).

Proof. Let r = n - 1 if -y is spacelike or timelike and r = n - 2 if -y is

null.

Since the space of parallel determinant functions along -Y is 1-dimen-

sional, it is clear that the formula in the assertion is independent of the

choice of det.

Assume that [A](to) is non-singular. There is a parallel linear tensor

class [B] such that [A] (to) [B] (to) = id. Let [C] = [A] [B] and f [Ei] Ij=
be a parallel orthonormal basis of [ ]

1
.
We choose the determinant func-

tion defined by det([D]) = Det(QDji)i,k), where Det is the standard de-k

terminant in Rr and [D] [Ek] = [D]i [Ei]. At t = to we have [C] [Ek] = [Ek]k

and Det([El],..., [EI) = 1. This implies

(det[C])’It=t,, = (detQC][Ej],..., [C][E,,-,])’It=t,,
r

det([El],..., [Ei- 1], [i ] [Ei], [Ei+,],..., [Er]) It=tO
i=1

n-1

= E [C]i det([El],..., [Ei-I], [Ei], [Ei+,],..., [Er])It=t,,
i=1

tr([C])lt=t,,.

Since [A] = [C][B]-1 we obtain therefore at t = to

(det [A])’ = (det [C] det [B]
- 1) == (det [Cl)’ det [B]

- 1

= tr([i ]) det [B] - 1
= trQi ] [B]

- 1
[B]) det [C]

-’ det([C] [B]

= tr Q-A] [B]) det [C] -det[A] = tr ([A] [A]
- 1

[C]) det [C]
- 1

det [A].

At to we have [C] = id and therefore (det [A]) *

= trQA] [A] -’) det [A]. I

Lemma 4.6.21 (Raychaudhury equation). Let (M, g) be a Lorentz-

ian or Riemannian manifold and -y be a causal geodesic if (M, g) is

Lorentzian and a spacelike geodesic otherwise. If [A] is a Jacobi tensor

class then its expansion satisfies

-Ric( ,,:y) - tr(W2) - tr(,72) _ n1102 if E f -1, 11,
-Ric tr(w2) - tr (U2) _ n1202 if 0.
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Proof. Let r = n - 1 if -/ is spacelike or timelike and r = n - 2 if -Y is null.

Let jEjjj=j,...,, be a parallel orthonormal frame of ( )-L. Since [Al is a

Jacobi class we have QAJ [A]
- 1)’ =- [A] [A]

- 1
+ [A] (- [A] [A] [A]

- [R] _ Q’41 [A]
- 1)2and therefore

(tr ([A] [A]-’))’ = tr (([A] [A]-’)
-tr([RI) - tr([A] [A]

- 1)2
r

0 )2)= -Y g (R(Ei,  ) , Ej) - tr w + a + - id

i=1
r

If r = n - 1 it is clear that Ei’=, g (R(Ei,  ) , Ej) = -Ric( ,  ). If -Y

is null we can find a parallel spacelike vector field E,_1 and a timelike

vector field E, such that IEl, E, I are orthonormal and En +

E,,. Then we have

n

Ric( ,  ) =: E g (R( , Ej) , Ej)

n-2

= E g (R( , Ej) , Ej)
i=1

+ g (R (En- 1 + E, E,,- 1) (E,,- i + E,,), En- i)

- g (R (En- I + En, E,,) (En- I + En), E,)
n-2

= E g (R( , Ej) , Ej) + g (R (E, E,,-,) E, En-1)
i=1

- g (R (E,- 1, En) E,,- 1, E,,,)
n-2

= E g (R(,:y, Ej) , Ej) ,

i=1

where we have used the symmetries of R and the fact that

n-1

tr(B)= E g(BEj, Ej) - g(BE, E,,)
i=1

for every linear map B. Hence in either case, r = n - I or r = n - 2, we

get

Ric( , -:y) - tr w2+ a
2
+

0
id +

2
(W+U) +WU+UW

r2 r

By definition we have tr(w) tr(a) = 0. For any tensor (B] we have

tr(([B] + [B]*)([B] - [B]*)) tr([B]2) - tr(([B]* )2) + tr([B]*[B])
trQB] [B] *). Since the definition of the trace implies
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n-1 n-1

tr([B]2) = E[91 ([B]2[Ei], [Ei]) = E[g] ([Eil, QBI *)2)[Ed)
i=1 i=1

tr(([B]* )2)

and

tr([B]
*

[B]) = trQB] QB]
*

[B]) [B]
- 1) = tr(B [B]

we conclude that tr(wa) = tr(aw) = 0.

Lemma 4.6.22. Let -y be a timelike or spacelike geodesic and [A], [B] be

Jacobi tensor classes along -y. Then the tensor class ([A]*), [B] - [A]* [B]
is parallel along -y.

Proof. First observe that [R] is self-adjoint. In fact,

[g] ([R] [v], [w]) = (R(v,  ) , w) = (R(w,  ) , v) == [g] Qv], [R] [w])

for all vectors [v], [w] implies [R] = [R]*. Hence we obtain

(([A] [B] - [A]
* [h]) = ([A] *) *’[B] + QA] [h] - QA] [B]

- [A]* [_b]
= QA]) *

[B] - [A]
= - QR] [A])

*

[B] + [A]
*

[R] [B]
= -[A]*[R]*[B] + [A]*[R][B] = 0.

We are now in a position to prove Proposition 4.6.3

Proof of Proposition 4.6.3. Let -/: R --+ M be a complete geodesic and

r = n - 1 if -y is spacelike or timelike and r = n - 2 if -y is null. We

choose to E R such that R(-,, (to)) (to)  4 0. The symmetries of R

imply then that the induced operator [R]: [ (to)]’ --+ [ (to)]J-, [v] 1-4

[R(v,  (to)) (to)] does not vanish. We need to show that -Y has a pair
of conjugate points. Let J be the space of all Jacobi tensor classes [A]
which satisfy w = 0, [A] (to) = id, and trQA] (to))0

We will first show that each [A] E J satisfies det[A](t) = 0 for

some t>to. Suppose (without loss of generality) that [A] E J_ Since

the shear a is self-adjoint, tr(a2) > 0 and the Raychaudhury equation

implies 6 < _102. If there is a t, > to with O(ti) < 0 then an integration
- r

t
implies

1
>

1
+

-t’ for all t > ti. Since the right hand side
0 (t) - 0(ti) n-1

vanishes for some t = t2 > t, the expansion O(t) must diverge at t2.

Consequently, det([A]) vanishes at t2- If there is not any ti > to with
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0(ti) < 0 then the inequalities 0(to) = tr([A](to)) :5 0 and  < -.102
r

imply 0(t) = 0 for all t > to. From the Raychaudhury equation we see

that a = 0 and therefore also [A] [A]-’ = 0 for all t > to. Because of

([A][A]-’)* = -[R] - ([A][A] -1)2 this would imply R(., 0 for all

t > to in contradiction to our assumption on to. The proof for [A] E J+
is completely analogous.

For each i > to let [Bj] the unique Jacobi tensor class which satisfies

[Bi] (i) = 0 and [Bi] (to) = id.

Assume for the moment that we have proved the existence of a Jacobi

tensor class [B] with [B] (t) = limi 7 1__,.[BE](t)anddetQB1(t1))= 0 Vt >

to. Since all Jacobi tensor classes [Bil have vanishing vorticity W so has

[B]. Moreover, [B] (to) = id implies that the Jacobi tensor class [B] must

lie in either J_ or J+. From the (still to be proven) fact that [B] (t)
is non-singular for t > to we infer that [B]’ E J+ \ J-. It follows that

tr([b] (to)) > 0 and therefore that there is a i > to with tr(jB ] (to)) > 0.

Since [Bi] (to) = id this implies that the expansion O[B,] of [BJ at to is

strictly positive. From the inequality 6[B, (OB ’)2 we obtain,J :5
n-1 f

1
>

I
+

to - t
for all t < to.

O[Bf O[Bf n - I(to) W

Since tt -- oo (t oo) this implies the existence of a ti which
n-1

satisfies det([Bi] (ti)) 0. Hence there is a non-vanishing, parallel vector

field V such that

V(t) E (, (t))-L for all t and BjV(ti) 0.

Since the non-trivial Jacobi vector field defined by J BiV vanishes at

both t, and i our geodesic -y has a pair of conjugate points.
We still have to show that [B] does exist and that [B] (t) is non-

singular for all t > to. In order to do so we will first obtain a formula for

[Bil which depends only on a single, given Jacobi tensor class.

Let [A] be the Jacobi tensor class which is uniquely determined by

[A](to) == 0 and [AI(to) = id. This tensor class is non-singular for all

t > to since [A] (to) = 0 and -yl [t,),,,) does not have conjugate points.

Let f be a parallel orthonormal frame of [ffj- along -/. With

respect to this frame we define a tensor class [C] by

t

[V] k.([C] [vl)’ = [A] (t) (QA] *

[A])
-

1) 3k (s) ds

Observe that this definition is independent of the chosen frame since any

two parallel orthonormal frames are related by a constant orthonormal
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matrix D and since such matrices satisfy D*D = id. We will show below

that [C] = [Bj].
But first we need to check that [C] is a Jacobi tensor class.

(14 1 (t) Io
i
= 1,41 (t) (([A]*[A])-’)j (s)ds[V]kk

t

[A]3 (t) (QA] [A])
-

1) 3k (t) [VI
k

k

= [A]3 (t) QA] ([C] IV]) (([Al’) IV])’

and therefore

[i ] (t) IV] [A] [A] [C] IV] - [A] [A] [A] [A] [C] IV]

+ [A][A]-1 ([A][A]-’[C] - ([A]*)-) IV]

+ ([A]
- 1 [Al

*

QA] *)
- 1

IV]

[A] [A] [C] IV] + ([A] [A] QA] [A]
- 1) *) QA] IV]

[A] [A] [C] IV],

where in the last equation we have used that [A] [A] is self adjoint by
Lemma 4.6.19. Hence we get

+ [R] [C] [A] [A] [C] + [R] [A] [A] [C]

QA] + [R] [A]) [A]
1
[C] = 0

and [C] is indeed a Jacobi tensor class.

Now we show [C] = [Bj]. Since [Qi) 0 = [Bi](i) the equality

[Bi] = [C] follows once we have shown [( J(i) Lemma 4.6.22

and (([A] [Bi] - [A] * [bi]) I t.
= id imply

([A] *)
*

[Bi] - [A]
* [bi] id

at all t E [a, b]. In particular, we get id [A] * (i) [bil (i) since [Bil (i)
0. This in turn is equivalent to [Bi](i) On the other

hand, [Qi) 0 implies [( ](i) = [A](i)[A]-’(i)[C#) - QA]*)-1(i)
- ([A] *)

- 1 (i) [bj (i). This completes the proof of [C] = [Bil.
We can now employ the formula

t

([Bil) [A]j’ (t) (([A] *

[A])
-

1) 3k (s)ds3
t

in order to show that [B] limi_,,,, [Bi] exists if for some a < to the

geodesic segment 7: [a, oo) M does not have any conjugate points. We
will prove this by showing that both limi_(,. [Bi] (to) and limi_,,. [bi] (to)
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exist (cf. Corollary 4.6.6). The existence of the first limit is trivial since

[Bil (to) = id for all i. By Lemma 4.6.19 and [Bj] (to) = id it follows that

QBi])*(to) = [bj(to) for all i. Polarisation implies then that [Bi](to)
is uniquely determined by the numbers [g] ([bj] IV], IV]) where IV] E

[ (to)]J-. We will now show that [g] ( Bi] IV], IV]) have a well defined

limit for every IV] E [ (to)]-L. Since we use an (orthonormal) parallel

frame along -y and [A] (to) = id we have

[Vj
k
IV]

1
[g] Oil (to) IV], IV]) 6j [A]j (to) (QA] *

[A]) -’) 3k (s) dsk
t

[g]’(([A] (t) IV], IV])
t

(([A]*[A])-’)’ (s)ds[V]k[V]1
k

t

- [g] (QA]*)-1(t)[v], IV])

and therefore for all > L

[g] (A+ I (to) IV], IV]) - Igj A- I (to) IV], IV]

t+

6ii (([A] *

[A])
- 1)’ (8) IV]

k
IV]

1 ds.
k

t+

[g] (([A] *

[A])
- 1(S) IV] k[Ek](s), [v] [Ej](s)) ds.

The last expression is non-negative since

[g] (([A]
*

[A]) IV], IV]) = [g] (QA]
*

[A])
- 1

IV], [A]
*

[A] QA]
*

[A]) IV])

= [g] ([A] QA]
*

[A])
- 1

IV], [A] ([A]
*

[A]) -IV])

and [g] is positive definite. Hence the function i F- [g] ( [bi] (to) IV], IV] ) is

monotonically increasing for every IV] G [ (to)]’. We will now show that

[g] ([bi] (to) IV], IV]) < [g] ([& (to)] [vj, IV]) for all IV] E [-Y(to)] J-. This will

give an upper bound for the monotonically increasing function

i - [g] (Al (to) IV], IV])
thereby ensuring that the limit exists. Theorem 4.6.2 implies that the

index form _TE,,y,-L is positive definite in all the cases we consider.
 -Y(a)I&YN)l

Hence applying the piecewise smooth Jacobi vector field

BaWP-YI[t,to]V
for t G [a, to],

Bi(t)P
-/I [to,t)Vfor t E (to, t].
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to IE"Y’l we obtain
f-Y(-)M-Y(tO)1

0 < IE -y I
J, J)

It  V J, V J) + (R(J,  ) J, dt

"a.

- ft  V V J + R(J,  ) , J) - (zA(V (to)J), J(to))
a

-  bj(to)v, Bi(to)v) + (ba(to)v, Ba(to)v)
- [g] ([bi] (to) IV], [Bi] (to) IV])+ [91 (A(to) I IV], [Ba I (to) IV]

-[91 ([bj1(to)[V1, IV]) + [91 (AI(to)[VI, IV])
which implies the desired bound. Let [bo]: ( (to)’ -- ( (to)’ be the

unique selfadjoint tensor class defined by

[g] (Iboi IV], IV]) = jim Igl (Ibil (to) IV], IV])
t-00

Then [bj(to) ---> [bol and, consequently, [B], where [B] is the

Jacobi tensor class defined by [B](to) = id, [B](to) This proves

the existence of [B].
We have still to show that [B] (t) is non-singular for t > to. From our

construction it is clear that [B] is given by

[B]’ (t) = [A]
 
(t) J00 (([A] *

[A])
j

(s) ds.k i
t.

k

Let IV] cz [ (t)]-L \ 101 and V be the parallel vector field along -Y with

V(t) = v. Then

[g] ([A] [B] IV], IV])

fo" [g] (([A] *

[A]) IV] (s), IV] (s)) ds
t

foo [g] QA] QA] *

[A]) IV] (s), [A] QA]
*

[A]) IV] (s)) ds

> 0

implies that the operator QA]-’[B])(t) is is non-singular. Thus B is the

composition of non-singular operators and therefore also non-singular.
I
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Einstein’s equation is of the form Dg = T, where D is an operator
p. 210 1

acting on the Lorentzian metric g and T an expression which describes
[I p. 270]

the distribution of matter in the universe. In Sect. 5.1 we motivate

that T should be a symmetric (0) tensor field which is divergence-free,
2

and in Sect. 5.3 we find an expression for Dg.

5.1 Matter

In Chaps. 1 and 3 we did not explicitly consider gravity. However, one of

the main insights of Einstein was that gravity and the geometry of space-

time are closely linked. His argument is very simple and runs roughly as

follows.

The movement of a particle which is subjected to a fixed external

"force field" depends on its initial location, its initial velocity, its mass,

and its charge (i.e. its "sensitivity" to the force field). For instance, a

particle in an electric field which is initially at rest will move to one

side if it is positively charged, to the opposite side if it is negatively

charged and not at all if it is neutral. To be more concrete, consider a

reference frame (-r, t) in a Galilei spacetime and suppose that there is a

non-relativistic particle (m, -y) which is located in an electric field  and

has the electric charge e. Then the formula

:4 -

M Y = e - (t(t,!)

holds. Similarly, let 6 be a gravitational field and g be the "gravitational

charge"i of the particle. Then

M.

holds. It is an experimental fact that the quotient -L depends on the
M

particle whereas the analogous quotient A- is a universal constant and
M

can be set = 1 (EUv6s 1896). Einstein concluded that this fact is not a

mere coincidence but reveals that gravitation is an acceleration (rather
than a force) and therefore something geometrical. He therefore replaced

1 It is usually called the passive gravitational mass.

ute
M. Kriele: LNPm 59, pp. 255 - 286, 1999© Springer-Verlag Berlin Heidelberg 1999
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the equation
14
= 6 by the geodesic equation V  = 0 and the "force

field" 0 by the connection V of spacetime. This point of view leads

to a physical interpretation of inertial observers: They are simply those

observers which are freely falling.
It is an experimental fact that the matter distribution2 spacetime

determines gravity. Hence we have to look for an equation of the form

Dg = T, (5.1.2)

where (M, g) is an n-dimensional Lorentzian manifold3, D is some kind

of operator acting on the metric g, and T contains the information on

the matter distribution. The "correct" form of T cannot be derived. First

of all, it is beyond doubt that matter cannot be described by a smooth

object in spacetime but instead demands a quantum description. This

implies that we can hardly expect a description from fundamental, phys-

ically suggestive principles. T will therefore be a classical approximation,
i.e. something phenomenological. Consequently, our final form for Equa-
tion (5.1.2), Equation (5.3.11) will appear to be grounded less firmly than
the spacetime structure. However, the reader should recall that in the

derivation of the Lorentzian structure of spacetime we already assumed

that light can be described in an entirely classical (i.e. non-quantum)
way.

The only matter models we had considered so far where special-
relativistic point particles (cf. p. 44) which admit a straight-forward

generalisation.

Definition 5. 1. 1. A particle is a pair (m, -y), where m > 0 is the mass

of the particle and -y is a curve in M with g( (t), (t)) = -1 for all

t E M, representing the history of the particle.

Exactly as in the special-relativistic analogy, an infinitesimal observer

v at x = 7(0) measures the energy E, = -mg( (O), v) and the spatial

momentum  (O)-L =  (O) - 1 -"v. The following simple observation will
M

serve as a guidance for defining T.

Lemma 5.1.1. Let x = -y(to) Cz M and Jw1,...,w,,J be n linearly in-

dependent timelike vectors with (wi, wi) = - 1. Then m (to) and m are

determined by the numbers E,,,, . . . , Ew.,,,.

Proof. Since 19(wi, is a basis of Tx*M, m is uniquely deter-

mined by Ew,,, and m can be calculated from -m2
= g(M , M ).

1

2 Here we use the term "matter" in a rather wide sense encompassing all forms

of energy. This is motivated by the special-relativistic equation E = mc
2

(c = 1: velocity of light) which asserts that (rest) mass is simply a form of

energy (cf. Sect. 1.4.3).
3 The spacetime we live in appears to be a 4-dimensional Lorentzian manifold.

However, in this book we will not specialise to n = 4.



5.1 Matter 257

In other words, we only need to know the energy function

E: fv E T,,,M : g (v, v) 1 R, w 1-4 E,,

in order to recover the complete information about a single particle.
Since g is a smooth object, we would expect T to be smooth also.

This indicates that point particles which are not depending smoothly on

the coordinates of M cannot be used to constitute T. The simplest way
to obtain a smooth matter distribution from a collection of particles is

to consider averages instead of individual particles.

Definition 5.1.2. A congruence of particles is a pair (,E, U), where

c: M --+ R is a function and U is a future directed vector field with

g(U, U) = -L

The integral curves of U are identified with the world lines of the particles
and the energy density function 6 with the energy density, measured by

comoving observers. To keep the presentation simple we will restrict to a

special case and assume that dO A0 = 0, i.e. that there exists locally a

spacelike hypersurface Z which is orthogonal to U (cf. Theorem 2.5.4).
If B c Z is a compact region then an observer flowing with the particles

measures for the energy of those particles which pass through B the

quantity

E = JB 'EME,

where jLZ is the induced volume form (cf. Definition 4.2.24 Since a

single observers must be identified with a timelike curve rather than a

congruence of curves this expression should be understood as an approx-

imation for small B. It is clear that we recover the definition of a point

particle if the compact set supp(,E) n Z shrinks to a point and the energy

density E increases adequately.
A different congruence of observers, represented by a vector field V

with g(V, V) 1 and dO A 0 = 0, will measure a different energy

content,

EV = JB
v

EV/-tzv I

where

- Ev is a spacelike hypersurface orthogonal to V,
- pzv the volume form induced on V,
- BV = fx E EV : 3 a particle through x which intersects ZJ,.and

4
Readers who have not read Sect. 2.5.4 may wish to do so now. Alternatively,
they may (for the time being) refer to the footnote in Definition 4.2.2. In

the following we will make use of calculus for differential forms (Sect. 2.5)
in order to avoid clumsy but straightforward calculations.
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- Ev is a function which depends on the congruence of particles (6, U)
and the observer  .el j V,

We will now motivate a transformation law E  -4 ev through comparison
with special relativity

Fig. 5.1.1. A localised

congruence

Consider Minkowski space (A', TI) and the inertial observer field

V: x  -4 V

where v is a vector with q(v, v) = -1. Assume also that the congruence is

localised, i.e. restricted to any spacelike hypersurface Z, Ev has compact

support (cf. Fig. 5. 1. 1) The inertial (or freely falling) observers t F-4 x+ tv

with common rest space x + vj- measure the energy

EV = JX+V-L EV /-tx+V-L =1.+V-L EV (V IPA-),

where MA,,. is the volume form of q. We assume now that the congruence

of particles is freely falling, i.e. the field U satisfies the geodesic equation

17UU = 0. In the limit that supp(Ev) n Z shrinks to a point we would

recover the energy associated with a single freely falling particle.
Since 17UU = 0 we can choose linear coordinates (x0 xl

.... Ix
n-1

such that

U=00, V= (aO + 11V1101) -

This gives

EV 'EV (aO + ilvim) J[1'?
+V V-1:T,1 V71
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f"+v I

F-V (dxl A ... A dx"'-'
X 1-ITe
- JjVjjdxO A dX2 ... A dx'-1

fx+v I

Evdxl A ... A dXn- I

Evdxo A dX2 ... A dx-

X+V-L

X1
++

Evdx Evdxo,

V-1 I
f.XO

ive VI-1
0, X2 n-1

where Fv(x x1) =: fEvd A ... A dx and 4 denote the maximal

(minimal) values of x restricted to the support of ev in x + V In this

hyperplane, we have xO JIVIlx' and therefore

X1
+

Ev I fX Evdx

Let -/: t - (t, X1, Xn-') and let (m, -y) be the corresponding freely

falling particle with rest mass m. Then its energy - measured in its own

rest frame - is to m ) =: -m (,Oo, ao) = m. The energy mea-

sured by the infinitesimal observer v ( fl - (ao +

is given by

to
Ev (Vm ) =

-

  -F,

An analogous relationship should also hold for our smooth congruence

U since this congruence can be used to smoothly model a point particle.
Hence we should have

E, +F&I.
X

11 IFVF
f

Since x  -+ Ev (x) was arbitrary this equation implies 'Ev E. This
T7-,FV1-11-1,11

transformation law indicates that EV depends quadratically on V.

Postulate 5.1.1 (Tensorial character of energy momentum).
The map T is a symmetric Q-tensor field and the energy density2

measured by an infinitesimal observer v is given by T(v, v).
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In the special case of our congruence of (non-interacting) particles there

is a simple, well defined tensor field TU
, namely

TU = c U, 0 U1.

Observe that cv = TU(V, V) is in accordance with the transformation

law derived above.

The following lemma indicates that it is enough to know all possible
energy densities c, in order to recover the tensor T (cf. Lemma 5.1.1).

Lemma 5.1.2. Let T be a symmetric (')-tensor. Then T is uniquely2

determined by the values T(u, u) for all vectors u with g(u, u) == -1.

Proof. Let T, S be two symmetric tensors with T(u, u) = S(u, u) for

all u with (u, u) = -I and let v be a timelike vector. Then the vector

v/ V_--(v,v, ) satisfies g (v/ V"----(vv,), v/ V _--(vv,)) = - 1 which yields
T(v, v) = S(v, v). Since the space of all timelike vectors is open there is

for every vector w a J > 0 such that v + tw is timelike for all t EE [-J, J].
Hence we obtain

T(w, w) =
I

(d T(v + tw, v + tw)
2 d-t

jt=0

2

=

1

(d S(v + tw, v + tw) S(w, W)
2 dt2 )

1t=0

and the claim follows from the polarisation identity.

Conservation of energy and momentum is another fundamental prop-

erty of matter which we wish to encode in our theory. We will find an

infinitesimal formulation which (in special cases) recovers conservation of

momentum (cf. Equation (1.4.12)). In Sects. and 1.2.1 and 1.4.3 we have

simply stated conservation of momentum. These conservation laws can

actually be derived within the theory of point particle mechanics. This

is the content of the Noether Theorem which is covered in textbooks on

mechanics. The main non-mechanical input for the Noether theorem is

the Galilei group (in the non-relativistic case) and the Poincar6 group

(in the relativistic case). Recall that the Poincar6 group is the set of all

isometries of Minkowski spacetime. In order to find an infinitesimal for-

mulation of conservation of momentum we will therefore have to employ
Killing vector fields which can be regarded as infinitesimal analogues of

1-parameter groups of isometries.

Lemma 5.1.3. Let T be a symmetric (') -tensor with div(T) = 0 and
2

be a Killing field. Then div (T( , 0.

Proof. since T is divergence-free we have
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div(T( , -) ) = V,, (TabQ = (VaTab) 6 + T
ab
(Va6) = T

ab
(VaCb) -

Now the symmetry of T and the anti-symmetry of Ve (cf. Lemma 4.5.2)
imply that the second summand also vanishes. I

Let lEtItER be a foliation of M into spacelike hypersurfaces with future

normals nt. A world tube with respect to lEtItER is an open subset )/V of

M with piecewise smooth, timelike boundary such that the intersection

WnEt is connected for all t. IfW is a world tube with respect to I-TtItER
then we denote th& subset UtE [ti,t2l

)/V n Zt by IlVt,,t, and the part of

the boundary which is not contained in Zt, U Zt, by )/Vti,,,,.

Corollary 5.1.1. Let T be a symmetric (0) -tensorfield with div(T) = 0
2

and  be a Killing field. Let tj < t2 and VV be a world tube with respect to

jZtjtER such that supp(T) nl/Vtim, 0. Then the following conservation

law holds.

(nt2 nt, _j pm (nt,, T nt2 -j AM

 2nwt,,t2 t, nwt, "2

Proof. We have

(nt, T( , -) ) (nt ipm)(VI,..., Vn_j)

(nt, T 0) ym (nt, V1 1 Vn-1)

-(T( , _j 1.tm)(Vj,...' V'_j)

for any (n - I)-tuple of vector fields tangent to Zt. Hence pulled back to

Zt,/, we get Ot, T( , .)0) nt Jym = -T( , .)0 Jym. This (and supp(T) n

Wtim. = 0) imply

I (nt,T( ,-)O)ntJpm=j  ntV T( , .)0) nt, J ym

t2 nw,, t2

nt2 'j AM

t, nw,,,, t2

where we have used that the future and past boundaries Zt2 and Zt, have

opposite induced orientations. The assertion follows now from the Theo-

rem of Stokes 2.5.5 since d( nt, T( , (ntipm)) = -div(T( , -)O)pm
o.5

Hence the quantity fZ, Ot, T 0) (nt J pm) is independent of the time

parameter t defined by the foliation if div(T) = 0. We will now identify

Readers who have skipped Sect. 2.5 may instead apply the integral theorem

of GauB.
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this quantity with a component of special-relativistic momentum in the

context of Sect. 1.4.3.

We will assume that spacetime is isometric to Minkowski spacetime
before a time tj represented by a spacelike hypersurface Zt, and after

a time t2 represented by a spacelike hypersurface Zt, We will study a

matter model which consists of k freely falling congruences of particles
in the region before Zt, and after Zt, In between these hypersurfaces
interactions or collisions may take place. Hence in this region we will (at
this point) neither make an assumption on the matter model nor on the

metric.

To be concrete, consider the set A', a point 0 E A', and a non-

vanishing constant 1-form -r. This 1-form defines a foliation of A with

affine hypersurfaces Zt = Ix E A : 7r(x-o) = tj. Let 77 be a Minkowski

metric such that Zt are spacelike hypersurfaces and let V be the time-

like, future directed constant vector field which is orthogonal to all Et
and satisfies q(V, V) = - 1. Assume that the spacetime (M, g) satisfies

M = A' and 9jfxEM:7r(X) '-[t1,t21j == 7711XEM: W(X) 'E[tl,t2l 1. Let (Ei, Ui)i=l,...,k
be the congruences of particles defined at all points x with .7r(x)  
(tl,t2). Assume that VUiUj = 0 and that the energy densities Ej sat-

isfy supp(Ei) n Ix E M : 7r(x) G Itli t2jj is compact.
Let T be a symmetric (0) tensor field with div(T) = 0 and

2

k

Tx = E ci (x) (Uj)
 
0 (Uj)

 for 7r (x)  (t 11  2)X X

and assume that (M, g) admits a Killing vector field  . Corollary 5. 1.1

implies that

f (V, ,
T V J pA,,- f (V, ,

T V _j /-tA,,,

t2

Conversely, it is clear that div(T( )) = 0 must hold if the integral equal-
ity is valid for all such particle flows.

Since the vector fields Uj are constant for x E Zt (t  [tl i t2l) we

get div(T) = I:k dEi(Ui)Ui = 0. If the vector fields Uj are at each

point linearly independent then this equation implies dEi(Ui) = Oj.e. the

energy density of each particle flow is constant along its flow lines. In the

following we will assume that this is also the case if these vector fields

are (pointwise) linearly dependent. Then the in-going and out-going rest

masses (mi),, (Tni)2 defined by

(Tni)a = f(_,').
+WO

,6i Ui J tLA-

where (Zi)a is chosen such that
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- supp(Ei) n Ix E M : 7r(X) E [tI 7 t211 = 0 and

- ?T((Zi)l) < t1, ?T((Zi)2) > t2

are well defined constants.

Fig. 5.1.2. T ransforma-

tion of the mass density in

special relativity

Assume now that the Killing vector field  is constant for t > t2 

t < ti, and denote these constant vector fields by 6  ,. For each vec-

tor field Uj and a E f 1, 21 there are vectors (e-i) a with (V, (ei) a) ::::::::: 0
1

((ei)ai (e-i)a) = 1, and

A) z-"-

I
(V + Oj (ei),,).

The integrals in the formula above reduce to

(V, T( , V J PAII Ei (V, Ui) (Ul  a) V J /-tA,l

k
6i

 a) fz V _j ttA,,,

t(II

k

(Ui7  a) Ei Ui J PAn

k

(Tni) a (Ui i  a)

where we have taken the length contraction into account (cf. Fig. 5.1.2).
Hence we recover conservation of special-relativistic momentum. This

motivates to demand the second matter postulate
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Postulate 5.1.2 (Infinitesimal conservation law). The tensor field
T has vanishing divergence, div(T) = 0.

Postulate 5.1.2 is interpreted as an infinitesimal formulation of conser-

vation of energy and momentum. That these quantities are conserved is

intuitively clear from the absence of a perpetuum mobile. However, the

infinitesimal formulation implies a true conservation law only if space-

time is endowed with a Killing vector field. In general, this is not the

case. It follows that conservation of energy can only hold infinitesimally.

Definition 5.1.3. A symmetric (0) -tensor field with div(T) = 0 is called
2

an energy momentum tensor. It is sometimes called stress energy mo-

mentum tensor or stress energy tensor.

5.2 Some specific matter models

If T and g are simultaneously diagonalisable,

-1 0
...

0 6 0
...

0

0 1 0 P,
g T= (5.2-3)

0 0

0
...

0 1 0
...

0 Pn-1

then E is interpreted as the energy density with respect to the flow of

matter and pi (i E 11, . . . ,
n - 11) are interpreted as principal pressures.

To motivate this interpretation we will simplify to a perfect fluid, i.e. a

matter distribution for which all principal pressures are equal.

5.2.1 The perfect fluid

Definition 5.2.1. Let E,p: M --+ R be smooth functions and U be a

vector field with g(U, U) = - 1. Then

T = (c +p)0 0 0 +pg

is called the energy momentum tensor of a perfect fluid. A perfect fluid
with p = 0 is called dust.

Observe that the energy momentum tensor T = EW & U5 considered in

the motivation of Postulates 5.1.1 and 5.1.2 describes dust.

Lemma 5.2. 1. Let T be the energy momentum tensor Of a perfect fluid.
Then div(T) = 0 is equivalent to

dc(U)=-(E+p)div(U), (,E+p)VUU==-7rU_Lgrad(p),

where iru-L denotes the projection to the orthogonal complement of U.
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Proof. It is straightforward to calculate

(divT),,

= bVcT9C ab

=9
cb(ac(E+P)Uaub+(E+P)((Vcua)ub+ua(VcUb)) +OcPgab)

= d(E+p)(U)U,,+(E+p)(VUU),,+(E+p)div(U)U,,+grad(p),,
= (dE(U) + (E + p)divU) U,,

+ (E + A(VUU)a + ((0 0 0 + g) (grad(p),

The assertion follows since VUU 1 U and (Ub (9 Ub + g) is the metric

projected to U
1

-
I

The vector field U is the velocity of the fluid particles and e the en-

ergy a comoving observer would measure. If the divergence of this vector

field is negative then the particles are getting closer together and conse-

quently the energy density should increase. This is expressed in the first

equation. The second equation states that the spatial acceleration of the

fluid particles is proportional to grad(p). This indicates that p should be

interpreted as the pressure exerted on the fluid.

Perfect fluids are phenomenological models and the equations im-

plied by div(T) = 0 tend to develop shock waves. It is therefore often

argued that perfect fluids exhibit properties which are not shared by real

matter. However, perfect fluids are prevalent in cosmological models of

the universe.

5.2.2 The collisionless gas

An attempt to arrive at a more realistic matter model is to consider a

relativistic gas. The idea is that we do not have a congruence of par-

ticles but that each individual particle can move in any direction. The

energy momentum tensor is then obtained by averaging over all particle
velocities. Let (xo.... Xn-1) be a coordinate system of M and choose

n-1the canonical coordinates (xo.... Ix ,Po .... Pn-1) of T*M which are

defined by a == Pa(a)dxa for every 1-form a E T,,,M. A relativistic gas

can be described by an energy momentum tensor

2Tab (X) =-- JP+
(-)

PaPbf(x, P) (- det((gcd)c,d=0,-..,n-1))_'! dP1 A ... A dPn,

where P+(x) C T*M denotes the set of future causal 1-forms and

f: P+(x) --4R+

is a density function. We assume that for lp,, I --- oc the function f(x, -) is

sufficiently rapidly decreasing so that the integral is well defined. Observe

that the n-form
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-1))_'! dP1 A ... A dp,det;((gcd)c,d=O,...,n 2

does not depend on the choice of coordinates (xl, Xn- 1) -
The rela-

tivistic gas is collisionless if the Liouville equation df(XH) == 0 holds,
where

XH =9
ab
PaaXb -

I
19x,ga6PaPb19pc .6

2

Using a system of normal coordinates it is easy to see that df(XH) =--- 0

implies div(T) = 0.

If U is a vector field and f was replaced by the delta distribution

j(,1-CUa _ pa) one would obtain dust. Hence dust may be viewed as a

"gas" whose molecules are all aligned and move into a preferred direction

determined by the vector field U.

Analogously, a relativistic photon gas is given by an energy momen-

tum tensor of the form

Tab (X) :::: PaPbA (X  P) Vpl (X),+ 0fPO
where Po+(x) C Tx*M denotes the submanifold of non-vanishing future

null Morms at x, v is a non-vanishing, oriented n- 1-form on PO+ (x),P+ (X) 00

and fo: P+(x) -+ R+ is the photon density function with respect to0

vp+(x). We assume that for IPal ---> oo the function fo is sufficiently
0

rapidly decreasing so that the integral is well defined.

The following lemma implies that the energy density associated with

a relativistic gas is always positive.

Lemma 5.2.2. Let T be the energy momentum tensor of a relativistic

gas (respectively, photon gas) with f ':: 0 (respectively, fo  ! 0). Then

T(u, u) > 0 for all timelike vectors u unless the density function f (re-
spectively, fo) vanishes.

Proof. This is clear since for each vector u the integrand in the definition

for T(u, u) is positive unless f (respectively, fo) vanishes. I

Lemma 5.2.3. Let T be the energy momentum tensor of a photon gas.

Then tr(T) = 0.

Proof. The assertion follows from

tr(T) == gab
, PaPbfO(XiP)1,'p(+

, (x) 91 (p, AA(X, A VP,+ (X)
= 0

+ 0 + 0

0
JP0

since the 1-forms p, are null.

Readers who have knowledge of mechanics will notice that XH is just the

Hamilton vector field to the Hamiltonian function H(x, p) = IgabPaPb. The
2

equation df(XH) = 0 expresses then conservation of mechanical energy (cf.
(Ehlers 1973) for details).
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5.2.3 The electromagnetic field

An electromagnetic field can be described by a 2-form F which satisfies

Maxwell's equations,

dF = 0, (5.2.4)

div(F) = J, (5.2.5)

where J is interpreted as an electromagnetic current one form. The first

equation can be geometrically explained within gauge theory (A small

volume which contains the essentials of gauge theory is (Bleecker 198 1)7).
The second equation does not have any content without a prior inter-

pretation of J. For our purposes it is sufficient to note that J is linked

to other forms of matter.

Remark 5.2. 1. Using the Hodge star operator we can write *d * F = J

instead of div(F) = J.

If there is no interaction between electromagnetism and the other matter

fields, i.e. if matter is neutral, then we have the set of equations

dF = 0, (5.2.6)

div(F) = 0. (5.2.7)

These equations are called the source-free Maxwell equations.
The electromagnetic part of the energy momentum tensor is given by

1

(gcdF Fbd _

ac
-

I
(F, F)gab) -(Tel)ab =

4-7r
-

4
(5.2.8)

We will sketch in Sect. 5.3.1 below how one may justify these formulas.

7
There are many mathematical texts on "gauge theory" which are very mis-

leading. For "mathematical convenience" (or lack of physical knowledge)
the Lorentzian metric of spacetime is replaced by a Riemannian metric.

This leads to equations which are of a very different nature from those

which describe physics. Only in very special cases (a prerequisite is that all

functions are analytic) is it possible to convert results of the Riemannian

theory to the Lorentzian theory using an analytic extension argument ac-

cording to which one can "rotate" a Riemannian theory into a corresponding
Lorentzian theory, where both theories are embedded in a complex theory.
In the literature on quantum field theory this rotation is known as the Wick

rotation. The Riemannian analogue of gauge theory is mathematically (but
not necessarily physically) of interest because it is linked to the well devel-

oped theory of elliptic partial differential equations. Gauge theory, on the
other hand, is linked to hyperbolic partial differential equations. To sell the

Riemannian analogue as gauge theory has presumably the advantage that

it makes it easier to get funds for research in pure mathematics. On the

other hand, it does confuse people. A pure Mathematician who worked in a

field closely related to this Riemannian analogue and who saw work using
the Lorentzian metric instead of a Riemannian metric once even asked me
whether this Lorentzian approach would also be useful to physics!
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Lemma 5.2.4. Let F be a closed 2-form and assume that Tj is given

by Equation 5.2.8. Then we have div(Tj) = F(.,  '-,div(FO)) = F(., JO)41r

Proof. Since dF = 0 we have VaFb, + VbF,, + V,Fab = 0 which implies
1 Fac -FacVoVbFca = Fb,. This gives

47rdiv(T)b = Va gcdFacFbd - 19ef9cdFecFfdgab
4

cd
VaFac + gcdF ga ef cd

= 9 Fbd ,
-

Fbd - -9 9 Ffdgaba,

4
VaF.

9ef9cdFecgabVaFfd
4

+ gcdF== F(., div(FO)) acVaFbd - -FecVbFec
2

= F(., div(FO)) + Fa,

VaFbc +1 FecVbFce
2

= F(., div(FO)).

I

Corollary 5.2.1. Assume that the source-free Maxwell equations hold.

Then

div(Tel) = 0.

Remark 5.2.2. Recall that in the derivation of the Lorentzian struc-

ture of spacetime we assumed that light rays can be described by null

geodesics. Since light is electromagnetic radiation we should now check

that this identification is consistent with the description of electromag-
netism in this section. However, this would require a proper discussion of

electromagnetism which is beyond the scope of this book. Readers with

knowledge of electromagnetism may consult (De Felice and Clarke 1990,

section 7.8) for the identification of light with lightlike geodesics. Here

we can only say that nullgeodesics can be taken as a description of light

rays in an (observer-dependent) limit.

5.3 Einstein's equation

Recall that the equation which links geometry and matter should be of

the form

Dg = T.

In the preceding two sections we have motivated that the right-hand side

of this equation should be a symmetric, divergence-free (0) tensor field.
2

Now we will find an expression for the left-hand side.
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In the Newtonian theory of gravitation, gravity is described by the

equations

I == 0 = grad(o), (5.3.9)

A0 = ko, (5.3.10)

where 0 is the Newtonian potential for the gravitational field. Equation
5.3.10 is a second order partial differential equation for the Newtonian

potential 0 and describes how it is related to the mass density
varrho of the universe.

Recall that we have replaced Equation 5.3.9 by the geodesic equation

17  = 0 which is equivalent to

 a a

Fbc

It follows that the Christoffel symbols rba,,, have a r6le similar to the

gravitational force field 6. One obtains the Christoffel symbols from g

via differentiation, just as one obtains the gravitational force field 0 from

the Newtonian'potential 0 through differentiation. This indicates that 0

corresponds to the metric g. Since the Newtonian potential is related to

the matter distribution via a second order partial differential equation,

we expect that g F-4 Dg is likewise a second order operator.

Postulate 5.3.1 (Gravitation is determined by a 2nd-ord. pde).
In any given coordinate system, D: g  --+ Dg is a pointwise smooth

function Of ged; aaged, and '9a'ybgcd-

Theorem 5.3.1. Let (M, g) be a Lorentzian manifold such that dScal: -
08 and Dg be a (0) tensor field which satisfies Postulate 5.3. 1 and

2

div(Dg) = 0

(cf. Postulate 5.1-2).
If, in addition, Dg is linear in aaabg then there exist constants A, y E

R such that

Dg = /-t(Ric -
1
Scalg) + Ag.

2

Proof. By Corollary 4.3.1 and the linearity assumption Dg must be of

the form

Dg = clRic + C2Scalg + C39-

Lemma 4.3.1 implies now

cl
0 == div(Dg) = (2 + C2) dScal.

8The condition states that dScal is not the null-function, i.e. dScal does not

vanish identically.
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Hence the result follows by our assumption that there is an x E M with

dScall., =h 0. 1

Remark 5.3. 1. The assumption that Dg is linear in its highest derivatives

is rather awkward. Lovelock (1972) has shown that in 4-dimensional (but
not in higher dimensional (!)) Lorentzian manifolds this assumption is

not needed, Unfortunately, his proof is far too involved to be reproduced
here.

Remark 5.3.2. Observe that we did not even need to assume symmetry
of Dg, i.e. Postulate 5.1.1 is superfluous. However, the symmetry as-

sumption was important to prove the conservation property Corollary
5.1.1 which motivates the requirement div(T) := 0.

In conclusion, our postulates imply that gravity is governed by Einstein's

equation as defined below.

Definition 5.3. 1. Einstein's equation (with cosmological constant) A E

R is given by

Ric -
I
Seal g + Ag = 87rT, (5.3.11)

2

where T is the energy momentum tensor describing the matter distribu-

tion.

In the above form, Einstein's equation is valid in geometrical units where

the Gravitational constant and the velocity of light are set to I (cf. (Wald
1984, appendix F) for explicit translation rules to other units).

Remark 5.3.3. Einstein's equation itself does not indicate any special
value for A.

In the past, astronomical observations seemed to imply that JAI is

very small, if not zero. It should also be noted that the Newtonian theory
of gravitation arises as a limit for c -4 oo (c: velocity of light) if and only
if A = 0. This implies that A must be very small if non-zero (cf. (Hawking
and Ellis 1973, p. 362), (Sandage 1968)).

On the other hand, I have been told that to present day cosmological
data point to a non-zero value for A.

Some of the theorems which will be presented do require A = 0,

Ric -
1
Seal g = 87rT, (5.3.12)

2

[p. 255 and in much of the literature Einstein's equation is used synonymously-9

1 p. 270 with equation 5.3.12.

9 Our guide ends with Einstein's equation. For what follows we will also use

the material which has been skipped in order to get to Einstein's equation
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5.3.1 The Lagrangian formulation of Einstein's equation

In this section an alternative way which leads to Einstein's equation
is sketched. This approach also aids in finding an appropriate energy

momentum tensor. Unlike the rest of this book, this chapter rests on

an underlying principle which is difficult to verify directly.
This section can be omitted on first reading and is not required for

any other part of this book.

It appears that all fundamental dynamical equations in physics admit a

Lagrangian formulation. According to this formulation, a physical system
is described by a Lagrange function L: E --+ R where E is an appropriate

generalisation of a vector bundle over spacetime M which contains the

possible physical states of the system.
Such a setup is motivated by classical mechanics. One can calculate

the movement of a point-particle -y: [a, b] -- A' with mass m which

is subject to a conservative" force field through the variation of an

associated Lagrange function. Let L: A' x R3
-- R be given by L(x, v)

T
- V(x). Then a curve -y satisfies the equationT (VI V)R3

rn (t) = -gradV1.y(t)

(cf. Equation (1.2.7)) if and only if

d
L(-y(t) + -rh(t),  (t) + Th(t))dt = 0 (5.3.13)T-r

[" b]r,

for all smooth maps h: [a, b]  -4 R3 with h(a) = h(b) = 0. In fact, we

have

d

)
J,=0

L (-y (t) + -rh (t),  (t) + -rh (t)) dtIr
la,b]

f[a,
b]
(M (:Y (t)' h (t) )

R3

- dV(h(t))) dt

(m (
d

)   (t), h(t))R3 - m ( (t), hW)R3f[a,b] dt

- dV(h(t)))dt
quickly. Since we will discuss now physical applications which make use of all

the mathematics which we have skipped, a continuation of this guide would

lead to a lot of skipping forward and backward. On the other hand, the

reader should have by now enough physical motivation in order to read the

mathematical sections which we have skipped without getting bogged down.

Still, the reader is advised to read on and to skip back only when needed.

On these occasions skipped material should probably be read section-wise.
10

Here "conservative" simply means that there is a function V: A ----> R with

P = -gradV.
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m ( (t), h(t))R3  m (t) + gradV,-,(t), h(t) ) R, dt.

the first summand vanishes for all choices of h with h(a) = h(b) = 0.

Assume, there is a to E (a, b) with m (to) + grad  y(to)  4 0. Since the

scalar product is non-degenerate there is an ho E R with

 m (to) + gradV,7(to), ho  W =h 0

(say > 0). Let h: [a, b] ---* R' be any smooth function with h(to) = ho.

By continuity there is a neighbourhobd (t-, t+) C (a, b) of to such

that (m (t) + gradVjy(t), h(t) )R3 > 0 for all t E (t-, t+). Finally, let

,0: [a, b] -- R+ U f01 be a smooth positive function with non-empty sup-

port in (t-, t+). Setting h = 7ph the integrand (m (t) + gradVjy(t), h(t) )R3
is non-negative and strictly positive in an open set. Hence the inte-

gral must be positive in contradiction to Equation (5.3.13). This proves

m (t) + gradV,.y(t) = 0 for all t.

The existence of a Lagrangian formulation is widely seen as funda-

mental for general (classical) physical systems. The physical state of an

elementary particle" is described by the section 0: M -- E of an appro-

priate vector bundle. Its governing equation should again be determined

by the variation of an integral equation whose integrand is built from 0,
its derivative, and physical fields which interact with 0. To make this

program work one first has to define the derivative of a section in an

arbitrary vector bundle. It turns out that one can generalise our treat-

ment of derivatives of vector fields (cf. Sect. 2.6) and define connections

of general vector bundles (Kobayashi and Nomizu 1963). It is also possi-
ble to define a notion of curvature for these generalised connections and

- analogously to the case of general relativity - one can interpret this

curvature F in terms of physical fields which interact with the given ele-

mentary particle. To obtain the complete system of equations one writes

down a Lagrange function which depends on 0, its derivative, the cur-

vature F, and perhaps other physical expressions. We denote all these

physical inputs collectively by 0: M ---> E and by T  -4 0, = 0 + T a

one-parameter family of sections such that  has compact support. The

equations which have to be satisfied by the physical system are then

given by
d

(.Cum) 0
a--r

M

for all variations 0, of 0. This recipe is referred to as the variation of
the Lagrange function C. The mathematical properties of equations of

It is far beyond the scope of this book to explain what this actually is. Our

only purpose is to vaguely set the following discussion into context. Readers

who want to know more are referred to books on gauge theory.
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this type are similar to the properties one encounters in the theory of

minimal submanifolds (cf. Lemma 4.4.8 and the discussion following this

lemma).
We will now discuss an example of this formulation, the physical

system consisting of electrodynarnics and gravity. To keep things simple

we will assume that there are no other physical inputs. In particular,
there are no electromagnetic sources, i.e., there no charges. Our Lagrange
function will consist of two summands,

L = Lgrav + Lei -

where Lgrav stands for the contribution from gravity and Lei for the

contribution from electrodynamics.

Remark 5.3.4. If we had included electromagnetic sources we would also

have to add at least two more terms:

- A term Ckin for the elementary particle which is analogous to the term

M ( )  6 in the mechanical example above, and

- a term Lint which describes the interaction of the elementary particle
with the electromagnetic field.

The reader may already have suspected that the electro-magnetic field

F is in fact the curvature of a generalised connection 2( (Bleecker 1981)
The connection Q1 can be identified with a 1-form A which, however, is

not invariantly defined. (This corresponds to regarding the Christoffel

symbols as tensors.). With this 1-form A we have F = dA. The first of

Maxwell's equations, dF = 0, is then a trivial consequence. According to

the program above we have to vary L with respect to the 1-form A. This

will give the second of Maxwell's equations, divF = 0. Gravity depends

on two geometric quantities, the torsion-free connection V and the metric

g. We will use the Palatini formalism, i.e., we will independently varyC

independently with respect to V and g. Observe that this independent

variation makes sense only if we do not assume a priori that V is the

Levi-Civita connection. It will turn out that the variation with respect to

the connection will fix the Levi-Civita connection and that the variation

with respect to the metric will give Einstein's equation.
12

The simplest non-trivial, invariant function L,j which can be defined

is (modulo constant factors and modulo the addition of a constant term)
given by

,ce, (A, v, g) = -

-

 F, F) = -- (dA, dA) ,

167r 167r

where (F, F) = gacgbdF,%bFd,

Alternatively, one could assume that the connection is the Levi-Civita con-

nection and only vary the metric. We have chosen the Palatini formalism

because this is more akin to the treatment of other gauge theories.
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Lemma 5.3. 1. Let B C 'r," (-A,-'[) be a terisor field with compact support
and consider the vaxiia-tio- --- dj,' ;- 4,

, 77, 4- -rB, V, g). Then

(C.iym) o 0, =
I

f ((&F)(B )[tm
M 47r

MA

holds, where  7 is the Levi-Civita connection of g and (Tiv is the diver-

gence operator associated with t .

Proof. From dBbd tbBd - tdBb we get

I d

f (dA,, dA,) pm
167r d7-

MA

-

-

-L I (F, dB) I-tm
87r

Am

=
-1 9ab9cd (Fac)(' bBd - tdBb)l-tM

87r IM
gabgcd(Fac)tbBdAM

47r AM

(tb (_,abgcd (Fac gabgcd,)Bd) tbFacBd) AM
47r M

(F (-, BO) 0) - (&F ) (B)) Mm.
47r

M

The first summand vanishes because of the theorem of GauB and the

fact that B has compact support. I

Since the fmCal (A, 17, g)lLm does not depend on 17 the variation with

respect to V vanishes.

Lemma 5.3.2. Let h C sym(T2(M)) be a tensor field with compact

support and consider the variation (A, 17, g,) = (A, 17, g + -rh).
Then

d
('COM) . 0, (Tel)abhabltMI-F 2 AM M

holds, where Tj is given by Equation (5.2.8)

Proof The equation 0 - '- ((g-r) ab (gT )bc) Ir=o
= habgbc +gab d(gr)bc I-r=OdT dr

implies

hac
d

(gr)ac.
dT

Recall from the proof of Lemma 4.6.20 that the derivative of det(,P,),
whereWT is a 1-parameter family of matrices, is given by (det(W,))*
tr(( W-') det W. This implies
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(det(g,))* = tr(h) det(g,),

where in this formula tr is the metric trace of a covariant (') tensor.
2

Using these two formulas we calculate
,

d

( j (41 0 07-) (tLM) -r)
IA 7=0M

16,1 (FacFbd (gr)ab(gr)cd _-_ Iet_(gr) Xn
-

M

d
V det(gr)) dxl A ... A d

7r dt I-r=o

2FacFbdgcd ab.", det ()
M

h g
167r

Xn+
2

(FF),I. det(g)tr(h))dx A ... Ad

1
acFbdgcd _

1
(F, F) gab) habMM.87r M

(F 4

I

Remark 5.3.5. We have thus obtained the form of the electro-magnetic

energy momentum tensor by variation of the simple Lagrange function

-(I67r)
- 1

(F, F)

with respect to the electro-magnetic potential A. For other matter fields

analogous results hold. In this sense it can be said that variational tech-

niques aid in finding the correct energy momentum tensor.

For the gravitational term we set

Lgrav (A, V, g) =
1

(Ricabgab - 2A),
167r

where Ric is the Ricci tensor with respect to the connection V. This is

again the (modulo constant factors and summands) simplest invariant

function which can be build from the metric g and the connection V.

Recall that for any two torsion-free connections V,   the difference is a

(l)-tensor field K which is symmetric in its covariant indices. In index-
2

notation, K is given by VVWa tVWa + Ka VcWd for all vectorcd

fields V, W. We simply write V + K.

Lemma 5.3.3. Let C E T2"(M) be a tensor field which is symmetric
in its covariant entries and which has compact support. Setting (V,)
V +,TC and 0, = (A, (V,), g) we have

d

( (,CgavAM) - 0,)
1,=Od-r

M
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bd 6a + K
d cgab - 2Kacb

,7r M(K d c d CcabAM161 1
where K is defined by V + K and ' is the Levi-Civita connection

of g.

Proof. Since the Ricci tensor is the only quantity which involves (V,)
we obtain

d

(f Lg,, o (A, (V,), g) (Mm),)
d

(Ric7-)ab 17.=Ogab4M.dT
M IT=O 16-7r

M
dTA A

Let x E M and consider a normal coordinate system centered at x. From

(Ric,)aU = ac (Fab + 7Cab) - '9b (1-ac + 7Cac)c c c c
cd c c d

-Ca
d c

-Cdd -Ca+ (Fab + 7 b) (Fdc + 7Cdc) - (Fac + 7 c) (-Vdb + 7 b)

and the fact that the Christoffel symbols vanish at x we see without

calculation that at x and for r = 0 the derivative of Ric, is given by

d
c c

j,-(Ric-r)abl,r=o,x = VcCablr=O,x - VbCaclT=O,x-

Since this is a tensor equation which is independent of coordinates it

must hold at all points of M.

c c with respect to the Levi-CivitaWe will now re-express VeCab-VbCac
connection  7 and the tensor field K. From the definition of K we get

c c c e e c e c

VdCab = tdCab + KdeCab - KdbCae - KdaCbe

and therefore

ab C ab
9 (Vecab - VbCac 9 ( ccab + KcceCab - KcebCae - KceaCbce

VbCac - Kb`eCac + KbecCae + KbaCcce)
ab

= 9 ( CCab - tbCac)
+ gab C(KceCab - KceaCbce - KbceCaec + Kb'aCcce)

= div(tr2,3C - trl,2C)

gab gdb a b fh6a)+ (Kc - 2 K + K hg e Cab,Ce ed f

where trij denotes the (metric) trace over the ith and jth entry. Since the

first summand is a divergence with respect to the Levi-Civita connection

its integral vanishes by the theorem of GauJ3. I
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Lemma 5.3.4. Let h E sym(T20(M)) be a tensor field with compact

support and g, = g + Th. For 0, = (A, V, g,) we have

d,r
M

= -

I
RiCab - 1Riccdgcdgab+ Agab habAm.

167r fm ( 2

Proof. We can split the integral into two parts which will be considered

separately,

d

( j (CgravAM) 0 07-)
I,=OAM

d
(g,)ab n

M -r
((RiCab - 2A)  det(g,)) dxl A ... A dx

167r d I-r=O

I d

((g,) ab V/---det(g,))
M

((Ric,)ab161r A I-r=O

d
xn.- 2A

T-F
V det(g,)I,=O)dxl A ... A d

Exactly as in the proof of Lemma 5.3.2 we see that the second summand

in the integral equals -Agabhab. For the first summand we calculate

d
(gr)ab -det(g,))TT

I-r=O

det((g,)a T) + (g,)ab
d

b)
Ir=od-r

gr
d7- det(g,),,=o

ac bd
- 1

ab cd
-

-g g hbdV- det(g) + -g g hedV- det(g)
2

and therefore

d

((g,.)ab,/-det(g7. )RiCab- det(97'))
Ir=odt

RiCab+ IRiccdgcd9ab hab V ---det(g).
2

The following corollary is the main result of this subsection.

Corollary 5.3.1. Let A be a I-form, V be a torsion-free connection, g

be a Lorentzian metric and set F = dA.

Einstein's equation and Maxwell's equations for a source-free electro-

magnetical field,
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Ric-
I
Scalg+Ag =

I

(gcdFacFbd - 1
(F, F)gab) 7

dF = 0, divF = 0
2 2 4

are equivalent to

(
d

(41 +,Cgrav) - MAM), = 0
d-7-

MA

for all variations 0, = (A, (V,), g,) = (A + -rB, V + -rC, g +,rh) where

B, C, h are tensor fields with compact support.

Proof. We can consider the variations with respect to A, V, g separately.
Since C is arbitrary Lemma 5.3.3 implies at each point x

(Kbd ja + Kdd gab - 2Kacb Ccabc
0d c

for all tensors Cabc which are symmetric in a and b. This is equivalent to

K
bd
d6a + Kadd6b + 2Kddcgab - 2Kacb - 2Kbca =: 0. (5.3.14)C c

Taking the trace with respect to b arid c we get

0 = K
ad

d + nK
ad
d+2Kdda - 2Kadd- 2Kdda = (n - I)K

ad
d-

Taking now the trace with respect to a and b we get

0 = 2nKddc - 4Kdcd = 2(n - 2)Kddc-

These equations together with the symmetry of Kabc in b and c: imply

(for n > 2) that all traces of K vanish. Hence Equation (5.3.14) simplifies
to Kacb = -Kbca and Kabc is a tensor with the properties

Kabc = -Kbaci Kabc = Kacb-

We will now show that this tensor vanishes. Since it has the property that

it is symmetric in two indices and anti-symmetric in two other indices,
the expressions sym(K ) and alt(K5) both vanish. This is equivalent to

0 = Kabc + Kbca + Kcab + Kacb + Kbac + Kcba

and

0 = Kabc + Kbca + Kcab - (Kacb + Kbac + Kcba)-

These equations imply Kabc + Kbca + Kcab = 0 and therefore, using the

symmetries of Kb, 0 = Kabc + Kbac + Kc = K.ab cab. Hence K vanishes

and we have V = t
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The equation dF = 0 follows trivially from the definition F = dA.

The second part of Maxwell's equations, divF = 0 follows immediately
from Lemma 5.3.1 since B is arbitrary.

Since h is arbitrary and we know that 17 is in fact the Levi-Civita

connection the validity of Einstein's equation follows immediately from

Lemma 5.3.2 and Lemma 5.3.4. 1

The process leading to Einstein's equation via Corollary 5.1.1 is referred

to as varying the total Lagrangian 41 + Lgrav with respect to the metric

9.

We have chosen electromagnetism for our matter model in order to

have a concrete example. To my knowledge all fundamental13
matter

models admit a Lagrangian formulation such that

d )
Ir=o

f ((Linatter + Lgrav)AM) 0 O-r = 0
d-r

AM

for all variations of the metric is equivalent to Einstein's equation for

the particular matter model.

That the Lagrangian ansatz described in this section works is by no

means trivial and I have no explanation for it.

5.4 The Einstein equation as a system
of partial differential equations

Physicists are accustomed to the fact that (classical) physical systems de-

pend on initial conditions and then evolve in a determined manner which

is governed by second order hyperbolic differential equations. Since the

energy momentum tensor T contains the metric, the Einstein Equation

(5.3.11) cannot be simply solved for a given T. Instead, one has to con-

vert the system. of Equations (5.3.11) into a system of partial differential

equations for g and some matter quantities.
The analogue in relativity would therefore be to fix an (n

dimensional Riemannian manifold (Z, 'g) which represents an initial

instant of time. This manifold will be isometric to a spacelike hyper-
surface in the solution. Since Einstein's equations are a second order

system we would need to prescribe a symmetric (0) tensor field k which
2

_r
specifies the normal derivative of the induced metric g or, equivalently,
the second fundamental form of our hypersurface. We also need to fix

functions or tensor fields which represent the initial matter distribution

at Z, possibly also their normal derivatives.

A perfect fluid is a macroscopic concept and the Lagrangian formulation

does not work well in this case. See (De Felice and Clarke 1990, chapter
6.5) for a discussion.
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The character of this system of partial differential equations will cru-

cially depend on the form of matter assumed. In particular, one can

choose unphysical matter models which lead to spacetimes in which it is

possible for information to travel faster than light (cf. Corollary 7.4.1).
It is also possible to choose unphysical matter models which do not lead

to a hyperbolic system of differential equations.
Another problem lies in the fact that we have always the freedom

to change coordinates. Hence the choice of coordinate system may also

have an effect on the kind of system of partial differential equations we
will end up with.

Nevertheless, in most situations of interest, it is possible to obtain a

well-posed system of equations. We will show this for the special case that

T = 0 and A = 0. In order to avoid subtleties arising from the theory of

partial differential equations we will assume that our initial data 0g, k are

analytic and that Z is an analytic manifold. (This restriction allows us to

appeal to the relatively elementary theorem of Cauchy-Kowalewskaya.)
We will also fix coordinates in which the equations are especially simple.

In Chap. 6 we will study the more general case of a perfect fluid.

However, we will impose strong symmetry assumptions in order to sim-

plify the problem drastically (cf. Sect. 6.2) - the system of equations
will be reduced to a system of ordinary differential equations.

Chapter 7 contains an intermediate treatment. We will again consider

a perfect fluid but use weaker symmetry assumptions which lead to a

system of partial differential with two independent variables. This system
of equations is substantially simpler than the general system depending
on 4 variables. We will therefore be able to give a smooth (rather than

an analytic) existence theorem (cf. Theorem 7.4.1).

Since the analogous but considerably simpler discussion in Chap. 6

already exhibits some of the key concepts of the initial value problem
for Einstein's equation, the reader may wish to skip the rest of this

section on first reading.

Let (M, g) be a Lorentz manifold Z C M be a smooth, spacelike hyper-
surface with normal14

n. For each x E Z consider the geodesic - ., with

 x(O) = nx. There is a neighbourhood of Z which is foliated by these

geodesics. If this neighbourhood is chosen small enough it is also foliated

by spacelike hypersurfaces of the form Zt = 1-yx(t) : x E Z1.
If one views M as being foliated by spacelike hypersurfaces Zt (ZO

Z) with induced metric -"'g then one can view the associated second

fundamental form kt as the t-derivative of -I-'_1,g:
2

Lemma 5.4.1. Let Z be a spacelike hypersurfaces of (M,g) and JZtj
be a foliation of a neighbourhood as constructed above. Let x1....

I
X
n-1

be a coordinate system of Z centred at x E Z.

14 Here we mean: g(n, n) = - 1, g (n, v) = 0 for all v G TZ.
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Then there is a neighbourhood U of x (E M such that g = -dt2 +

j:n-1 q,j (t, xi, Xn-')dx'dxj.i=1

Moreover, the second fundamental form kt of Zt is given by kt
X

c9t z`9

Proof. We can find a neighbourhood U of x such that for every point

y E U there is exactly one point -' E ZnU and one geodesic -y, through: 
which satisfies  , (0) = n,. and intersects Z exactly once without leaving
U. This gives a chart (U, p) defined by W(y)
where y = -/, (t).

It follows from our construction that the induced metric on Et is

given by Ztg = En-1I gij (t, X1 I .... Xn-1)dx dxi, where gij are suitable
i,j=

functions. At t = 0 we have for each -- E Z

n-1

gj = -dt2 + E gij Xn-l(.: ))dx dxi
i,j=l

since   (O) = nx _L E = ZO. From

=0

tz 0 (:4' axi) V%%,axi ) + ( X' V%axi  at' Vataxi

at, V'9X i,
a, Va,2 Xi

0

we get (t) I Zt for all t. This implies the claim for the metric compo-

nents.

From Lemma 4.4.6 we get

kt (axi, axj) = Vaxiat' axi (Vaiaxi" a",j

= at 0 gij -  axi' va"9xj ) = at * gij - kt (axi , ax i ) -

The assertion kt = -LCOtEtg follows now from the symmetry of kt and
2

from

Vat_,"19) ii
= Vat E19) Oxi. I axi)

=0 =0

'9t -'""gij - -,"'gGeataxi, axl) - E"g(axi.' xat,9xj) = atgij.

I

We denote the Levi-Civita connection induced on Zt by EtV and the

Ricci tensor of (Zt, Elg) by El Ric.
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Lemma 5.4.2. Einstein's equation with vanishing cosmological constant

for vacuum is equivalent to the following system of equations.

Otat-"'gij = -2EtRiCij -
1
atzt'9ijatZt'9k1 - 19tZt'9ikatZtgil Z"gjl z119k1,(2

0 = Z'Scal + (19tZt'9ij19tZt'9k1 - atZt`9ik19t 5,tgil) Zt,gii Etgk1
4

0 = _aX,(Etgjkat Zt'gjk) + Ztgjkax., Ztgik

Proof. Einstein's equation is given by Ric - s`1g = 0 which is equivalent2

to Ric = 0. The GauB equation (Proposition 4.4.1) and Ric = 0 imply

Zt Ric(U, W) = (R(at, U)W, at) - tr (kt) kt (U, W)

+ Z"g (kt (U, -) 0, kt (W,
= (R(U, at) at, W)

4

5'(19t -`9ij at Zt'gkl - at 5t'gik 19t Et,
gjl

Z1,gj1 zt,gklUiWj

In order to simplify the term (R(at, U)W,,9t) we may assume that U, W
can be extended to vector fields U, W which are everywhere tangent to

Et and commute with i9t. Using Lemma 4.4.4 we obtain

1--*1--l

=0

W)(R(U, at) at, W VU Vatat -Vatvuk

(V"tVUat, W)  V",Vatu, W)
 Vqtkt (U, -) 0, W)
I
at - (.Ca --,.g(U, W)) + ISa Ety(u, Va W)

2 t 2 t t

== -

2
X'9tSat-,",g(u, W) +

4
-C
at -'"t,9A -Pat -Y,119 (WI -) 0) -

Ot at -"gii +I19t 5t'9ik19tEt9j1gk1 ) UiWj.
2 4

Hence the spatial components Ricij == 0 of Einstein's equation are equiv-
alent to the first system of equations in Lemma 5.4.2.

From

Rijkl Etgik Etgjl = Rijkl (9 + at (g at)ik(gV + at & at)j1

= Scal + 2ffic(Ot, at) = 2(Ric - ScIal g) Ot o9t)

and the GauB equation we get

Ric (,9t, at) = - I(Scal + Et Scal + tr(kt )2 _ 11kt 112)
2
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Hence Ric = 0 implies -"I Scal + -1 (tr (-C at Ztg)2atZtg 11 2) = 0.
4

Let fEl, E,,- 1 1 be an orthonormal frame of Zt and U be a vector

field which is tangent to Zt. Then the Codazzi equation (Proposition

4.4.2) implies

Ric (,9t, U) = 1: (R(Ei, Ot) U, Ej)
i=1

(VU(kt & at) (Ei, Ej), at)

(7Ej (kt 0 at) (U, Ej), at))
n-I

= E ( ((VUkt) (Ei, Ej) i9t, at) - (TEj
* kt) (U, Ej) i9t, at )

j=1

n-1

((-"'VUkt) (Ei, Ej) Ot, Ot)

VE, 9 kt) (U, Ej)at, at)'
U tr (kt) + -"Idiv (kt) (U).

( ax, (Zjg'k,9t t +
Zt, jk a. Ui.

2

Z
gjk) g X.1 Zt'gik)

Hence Ricti = 0 (i E  1, n - 11) is equivalent to the last system of

equation in the statement of the lemma. I

The first system of differential equations in Lemma 5.4.2 consists of

n(n - 1) coupled differential equations for the 1n(n - 1) unknown func-
2

tions gij = gji (i, 1, . . . ,
n - 11). One would expect that these equa-

tions would uniquely determine g and that therefore Einstein's equation

would be over-determined. Since over-determined systems of differential

equations have only very few solutions (if any at all!) and are in general

incompatible with initial value problems, Einstein's equation seems (at
first sight) to be very different from other equations in physics. However,

the following lemma shows that the over-determinacy of this system is of

a very special nature and in fact compatible with a (slightly restricted)
initial value problem.

Lemma 5.4.3 and Theorem 5.4.2 below hold for initial data which are

not necessarily analytic. However, the proof is then much more difficult

since we cannot anymore appeal to the relatively elementary theorem of

Cauchy-Kowalewskaya.

Theorem 5.4.1 (Cauchy-Kowalewskaya).
Let F: R2m- I

--- Rkand fo: R'-1 ---> Rk be analytic maps. Then there
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is a neighbourhood U c R- of x- = 0 and a unique analytic map

f: U -- Rk which satisfies the system of partial differential equations

ax rn f=z 719X-.-1f).

and the initial conditions f (0, x1.... I
XM-1 fO(X1....

I
XM_ 1).

Proof (sketch). The idea of proof is to determine the Taylor series of f
at X E jxm = 01 by successive differentiation of the system of partial
differential equations and then to show that this series converges. A

formal proof can be found in (Dieudonn6 1971). 1

The theorem of Cauchy-Kowalewskaya rests on the fact that an analytic
function is determined by its Taylor series and it does not hold when

the word "analytic" is replaced by "smooth". In the non--analytic case

the structure of the system of partial differential equations matters for

both, existence and uniqueness of solutions. This fact indicates that by
restricting to the analytic case one may (in general) obtain results which

are misleading because they do not generalise to the smooth case.

Lemma 5.4.3. Let (M, g) be a real-analytic spacetime, {ZtltER be a

foliation as in Lemma 5.4-1, and assume that the spatial metric compo-

nents gij (i, j E f 1, - - . ,
n - 11) satisfy

at,9t-'_1,gjj = -2z'Ricij -

ji k1(2 atgij'9tgkl - 19tgik'9tgjlg )9
If at Z = ZO the "constraint equations"

0 = 'Seal + (tr(k) )2 _ 11kJ12, 0 = -dtr(k) + 'div(k)

hold then (M, g) satisfies Einstein's vacuum equations with vanishing
cosmological constant, Ric = 0.

Proof. Let Ric be the Ricci tensor associated with g = -dt2 + gij dx'dxj.

By'assumption, this tensor satisfies Ricij = 0 for all spatial compo-

nents. The identity div(Ric - 1 Seal g) = 0 implies therefore gab (19aRiCbc -2

2r,'d,cRiCdb) -,9,Scal = 0 which is equivalent to

n-1

0 = -,9tRictc - aiRicic - aRictt - 2rdcRiCdbgab

Since Ricij = 0 this is a linear system of n partial differential equa-

tions for the unknown functions Rictt, Ricti. The constraint equations
are equivalent to Rictt = Ricti = 0 at Z. Hence we have Rictt =

Ricti = 0 everywhere by the uniqueness-part of the theorem of Cauchy-
Kowalewskaya. I
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Theorem 5.4.2. Let (Z, -g) be an (n - I)-dimensional real-analytic
Riemannian manifold and k G sym(T20(Z)) be a real-analytic tensor

field which satisfies

0 = ZScal + (tr(k) )2 _ ilk 112, 0 = -dtr(k) + Zdiv(k).

Then there is an n-dimensional real-analytic Lorentzian manifold (M, g)
and an immersion t: Z -- M such that t*g = _1'9 and t*ko = k, where

ko is the second fundamental form of t(Z).
Moreover, if (1 1, j) is a second Lorentz manifold with these properties

then t(Z) C M and E(Z) C 1 1 have neighbourhoods which are isometric.

Proof. Fix a coordinate system for Z and consider the system of partial
differential equations

Ot(kt)ij = -[-"1Ricjj](Ztg, ((ht)[kj)k=1,...,n-1 ((ht)[kl])k,1=1,...,n-1)

Zt k1
- ((kt)ij(kt)kl - 2(kt)ik(kt)jlzlgjl) g

Ot-"',gij = 2(kt)ij,

,Ot(ht)[k]ij = 2,%k(kt)jj,

,9t(ht)[kl]ij = 2a,,ka.,1,(kt)jj,

where [ZtRicjj](E1g, ((ht)[k])k=1,...,n-1, ((ht)[kl])k,1=1,...,n-1) is the alge-
braic expression defined by

["7tRicjj](Ztg, (aXk
5'

Ztg)k,1=1,...,n-1) = Z'Ricij.-t9)k=1,...,n-1, (aXkaXI,

The theorem of Cauchy-Kowalewskaya implies that for any real-analytic
set of initial values 1,-rOgij, ko, ((ho)[k])k=1,...,n-1, ((ho)[kl])k,1=1,...,n-1j7
there is a neighbourhood U of t = 0 and a unique solution of the system

of partial differential equations which is defined on U and has these ini-

tial values. Since at-tgij = 2(kt)ij the equation at(ht)[k]ij = 2ax1c(kt)jj
implies

0 = at (ht) [k] ij
- a,,k at Z"gij = at ((ht) [k] ij

- aX k Z"gij).

From an integration of this equation we see that (ht) [k) ij aX k -"tgij if

(ho)[k]ij = 19XkZ"gjj. In the same waywe see that (ht)[kl]ij 19Xk,9X,,-,"gjj
if (ho)[kl]ij = aXkaXI -Togij. It follows that the solutions Z1,gjj of this

system of equations also solves

rtgik at
5'

t'gjl 1919tZ tgjl
Z W.atatzlgij = -2ztRicij - (2 t'9ij19tZt9k1 - 19t 

if and only if the initial conditions

atE"gij = 2(ko)ij7 (ho)[k]ij = aXkZ('gij, (ho)[kllij = aXk19X1,ZOgjj
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hold. Now the assertion follows directly from Lemma 5.4.3. 1

Theorem 9.4.1 is local in character. Also note that the coordinates chosen

tend to develop singularities due to focusing effects (cf. Proposition 4.6.1)
and observe that the geodesics t  --+ (t, x1, . . . , x') are length maximising.

A discussion of the smooth case can be found in (Hawking and Ellis

1973, chapter 7). An improved but mathematically more sophisticated
theorem is presented in (Hughes, Kato, and Marsden 1977)



6. Robertson-Walker cosmology

6.1 Homogeneity and isotropy

It is very difficult, and one cannot make with any certainty assertions

about the universe as a whole. This is so because we only know a very

small portion of the universe. Hence any cosmological model reflects our

own prejudice. Nevertheless, there are certain assumptions which seem to

have a high degree of plausibility. After having built a cosmological model

one can compare it with the few data we do have. Although imperfect,
this approach seems to have given us much deeper understanding of the

development of the universe than would seem possible at first sight.
The first cosmologists placed the earth at the centre of the universe.

Copernicus’ revolutionary model gave us a much more humble place in

the solar system - the earth was reduced to being just one of its planets.
This model of the universe had such a success that nowadays we not

only take it for granted but don’t even sincerely doubt that there may

be other (more advanced) forms of life in the universe. At Copernicus’

times, such a thought would have been considered blasphemous. The

monk Giordano Bruno (1548-1600) was burned because he asserted the

truth of such ideas.’ Our new modesty leads us to think that our place
in spacetime is in no way exceptional, and that there are no exceptional

places anywhere in spacetime. We will use this fundamental idea to build

a cosmology.
Let x E M be our event in spacetime (M, g) and Ux E TxM be the

velocity vector of our world line. If there is not any point (or direction)
in spacetime which is special then the universe should be isotropic, i.e.,
it should not be possible to distinguish any direction in Ux-L by physical
measurements. Although a glance at the nocturnal sky indicates that

this is at odds with experience, on a sufficiently big scale this assumption
coincides very well with observation. The galaxies seem to be randomly
distributed, and since at night we mainly see a part of a single galaxy
(the Milky Way), our first impression is not very representative.

He is sometimes styled and an important forerunner of enlightenment. I

must confess that I find his book (Bruno 1584) quite unscientific.

ute
M. Kriele: LNPm 59, pp. 287 - 305, 1999© Springer-Verlag Berlin Heidelberg 1999
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The mathematical interpretation of the isotropy assumption is that

it is impossible to construct geometrical objects, using Ux and U-L which
X

are breaking this symmetry. Let E be (any) 3-dimensional subspace of

the (n - I)-dimensional space U.- and u, v, w be vectors in E. Since

R(v, U)U is a vector, isotropy about Ux and the fact that (R(v, U) U, U) =
0 imply that R(v, U)U =: I-t(x)v for some scalar I_t(x). Consider any 2-

plane P = spanfu, vJ in E. The sectional curvature K(P) should be in-

dependent of P since otherwise therewould be a plane PO of maximal sec-

tional curvature which in turn defines a distinguished direction POJ- in E.

Since by isotropy there should not be any distinguish’ed direction in E we

conclude that at x the equation R(u, v)w = n(x) ((v, w) u - (u, w) v) +
c(u, v, w)U holds

-
We show now that c = 0. The vector

R(P) = ((U,V)2 _ 11U11 . IIVII)-1/2R(u, v) U.,

lies in U.J- and depends only on P (rather than on the representatives

u, v). Denote by irp the orthogonal projection U
1

-- P. For each vector

n E E with g(n, n) = 1 let P,, be the plane in E orthogonal to n. Since

7rp. (R(P,,)) lies in P,, and is therefore orthogonal to n we obtain a vector

field 93: n  --+ 7rp,, (R(P,,)) on the 2-sphere fn E E : g (n, n) = 11. Since

the 2-sphere is compact the vector field 93 has constant length since

otherwise there would be a distinguished direction of maximal length
in violation of isotropy. By Theorem 2.5.11 this is impossible unless the

vector field vanishes identically.
By isotropy, it should have no component in P since otherwise there

would be a distinguished direction in P. It follows that R(P) is orthog-
onal to P. Further, its length cannot depend on P since otherwise there

would be a distinguished plane (and therefore a distinguished vector) in

E.

Let u, v, W E E. From,7r,;Panfui,U2J (Rspanful, U21) == 0 for all vectors

U1 i U2 E E we obtain

; 02
(R(u, v)U.,, w) = (R(u, v + w)U-,, w)) - (R(u, w)U.,, w))

= (R(u, v + w)U, v + w) (R(u, v + w)U, v)

1-
;02

-1

- (R(u, v) U,,, v)) - (R(u, w)U, v)) .

This implies that the tensor field (u, v, w) t--> (R(u, v) U, w) is antisym-
metric. Since  R(u, v)U,,, w) = - (R(u, v)w, U,,) = c(u, v, w), c is a 3-

form. The first Bianchi identity (Lemma 2.8.2) yields (R(u, v)w, U,’) +
(R(v, w)u, U,,) +  R(w, u)u, U,,) = 3c(u, v, w) = 0. This motivates the

following definition.
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Definition 6. 1. 1. Let (M, g) be a Lorentzian manifold and U., E M,

(Uo, U.,) 1. The spacetime (M, g) is called infinitesimally isotropic
about U., if at x the curvature tensor satisfies

R(u, v)w = n(x) ( v, w) u -  u, w) v)

R(v, U.,)Ux = tt(x)v,

for all u, v, w E UxL, where y(x), K(X) E R are independent of u, v, w.

The spacetime (M, g) is called infinitesimally isotropic if there exits a

normalised, timelike vector field U such that (M, g) is isotropic about

Ux for all x E M. If (M, g) is infinitesimally isotropic, U is called a

cosmological observer field.

Given an infinitesimally spacetime, there may not be a unique cosmolog-
ical observer field. For instance, in Minkowski spacetime all normalised

timelike vector fields are cosmological observer fields.

In the following we will assume that spacetime is infinitesimally
isotropic. While it can be argued that infinitesimal isotropy about our

own velocity vector is backed experimentally fairly well, it is a very

questionable extrapolation to assume that spacetime is infinitesimally
isotropic. On the other hand, this extrapolation seems to be exactly the

lesson learned from Copernicus. Hence to demand that (M, g) is infinites-

imally isotropic appears very plausible to us. (Our acceptance of such

a postulate is in striking opposition to the response a medieval scholar

would have given).

Lemma 6. 1. 1. Let (M, g) be infinitesimally isotropic about U,,.

Then

R(u, v)U,, = 0 and R(U, u)v = -I-t(x) (u, v) U.,

for all u, v E U,,J- and the energy momentum tensor is given by

TX = 0EW + Xx)) UX’ (9 U + P(x) g,X

where

87rc(x) = I(n - 2)(n - I)r,(x) - A,
2

8,7rp(x) = (n - 2) (n - 3) n(x) + p(x) + A.(_2
Proof. Let u, v, w E Uj. The first assertion follows from (R(u, v)U, w)
- (R(u, v)w, U.) = 0 and (R(u, v)Ux, Ux) = 0. The second asser-

tion is a consequence of (R(Ux,u)v,w) =  R(v,w)Uu) = 0 and

(R(Ux, u)v, Ux) = (R(u, Ux)Ux, v) = y(x) (u, v). Taking the trace of R

we obtain
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Ric(Ux, Ux) = (n - 1)p(x), Ric(Ux, v) = 0,

Ric(u, v) = ((n - 2) n (x) - /-t (x)) (u, v) ,

and therefore

Ric = ((n - 2)/,t + (n - 2)r,) 0 0 0 + ((n - 2)K - /_t) g.

Taking again the trace we have Seal = -(n - 2)(y + n) +

n((n-2)n-/_t) = (-2n+2)jL+(n-1)(n-2)K- The energy momentum

tensor is now given by

8-ffT = Ric -
I
Seal g + Ag

2

= (n - 2)(/,t + K)O & 0

+ ((n - 2)K - ft -
-1
((-2n + 2),4 + (n - 1)(n - 2)r,) + A 9

2

=(n-2)(,u+r,)0O0+ (n-2)
3 -

nn+(n-2)tz+A g.
2

It follows that the energy density E and the pressure p are given by
81r(e +p) = (n - 2)(tz + r,) and 8irp = ’(n - 2)(3 - n)r, + (n - 2)/-t + A.

2

1

Lemma 6.1.2. Let (M, g) be infinitesimally isotropic and U be the cos-

mological observer field. Further assume that n > 3 and that E + p : 0.

Then Uj- is an integrable distribution. The hypersurfaces perpendicular
to U are totally umbilic (cf. Definition 4.4.7) and r, is constant on these

hypersurfaces.

Proof. Let X, Y, Z be vector fields which lie in Uj- at x and satisfy the

equation

VUX - (X, vuu U = 0

(analogously for Y, Z). This can easily be arranged by considering vec-

tor fields along a hypersurface Z which lie in Uj-. They may then be

uniquely extended into a neighbourhood of Z using the above differ-

ential equation. From VU (X, U) =  VUX -  X, VUU) U, U) = 0 it

follows that X, Y, Z are everywhere perpendicular to U. Moreover, the

derivative VUX is parallel to U since VUX = - (VUX, U) U (anal-
ogously for Y, Z). We will now exploit the second Bianchi identify (cf.
Lemma 2.8.1),

(VUR) (X, Y) + (VXR) (Y, U) + (VyR) (U, X) == 0.

Using the formulas in Definition 6.1.1 and the property
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VUX’ VUY’ VUZ 11 U

we calculate

(17UR) (X, Y)Z = 17U (R(X, Y)Z) - R(X, Y)17UZ
- R(VUX, Y)Z - R(X, VUY)Z
dr,(U) ((Y, Z) X - (X, Z) Y)

+ K ((Y’ Z) VUX - (X, Z) VUY)
- 0 + P (Y’ Z) VUX - tt (X, Z) VUY’

(VXR) (Y, U)Z = VX (R(Y, U)Z) - R(7ru i (VXY), U)Z
- R(Y, VXU)Z - R(Y, U)VXZ

VX (A (Y’ Z) U) - /-t (Z’ VXY) U)

- K ((VXU, Z) Y - (Y’ Z) VXU)
- /-t(- (U, vxz))Y - p  Y’ VXz) U

dl-t(X) (Y, Z) U

+ (K + P) ((Y1 Z) VXU -  Z’ VXU) Y),

and

(VyR) (U, X)Z = - (VyR) (X, U)Z

= -d[t(Y) (X, Z) U

- (r, + [1) ((X, Z) VYU -  Z’ VYU) X).

Inserting these equations into the second Bianchi identity we obtain

0 = dti(X) (Y, Z) U - dy(Y) (X, Z) U

+ (A + K.) ((Y1 Z) VUX - (X, Z) VUY),
0 = dr,(U) ((Y, Z) X -  X, Z) Y) - (y + n) ((Y, Z) VXU

- (X, Z) VYU +  Vyu’ Z) X - (VXU, Z) Y). (6.1.2)

Since n > 3 there are pointwise linearly independent vector fields X, Y

with X J- Z, Y I Z. For these vector fields Equation 6.1.2 implies

0 = (/,t + K) ((VYU, Z) X -  Vxu’ Z) Y).

It follows immediately that for orthogonal vector u, v the expression.

(u, VvU) vanishes. Hence, restricted to Uj-, the bilinear form VO is

a multiple of g restricted to U-L. In particular, VO restricted to U 1

is symmetric. We will now show that the tensor field V((n + I-t)U) is

symmetric in all of T,M. Since U is symmetric on U-L and V((n+M) U) =

(d/-. + dy) 0 U + (n + y)VU we only have to show (VX ((n + /-t) U), U) =
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 VU((n + y)U), X). Setting Y = Z and choosing X 1 Z at x we get
from Equation 6.1.1

dl-t(X) = (1,t + n) (VUX, U) = -(p + n) (X, VUU).

Lemma 5.2.1 implies

dp(X) = - (E + p)  X, VUU),

and therefore -

-1 (n - 3)dr,(X) + dp(X) (ft + n)  X, VUU), where
2

we have used the formulas provided by Lemma 6.1.1. Combining this

equation with dlt(x) = -(M + n) (X, VUU) we obtain dn(X) = 0. Now

we can calculate.

(17X((r, + y)U), U) = -d(r, + p)(x) = -dp(X) = (p + n)  X, 17UU),

(17U((K + A)U), X) = (y + K)  17UU’ X).

It follows that V ((r,+ /,t) U) is symmetric in all of T,M and that therefore

d((n + M)W) = 0. By the lemma of Poincar6 there is a function t with

dt = (K+p)W. The hypersurface Zi = Ix G M : t(x) Tj is orthogonal
to U for each f. Its second fundamental form, k(u, v) (u, VvU), is a

multiple of g restricted to Zi which implies that Zi is totally umbilic.

I

Theorem 6.1.1. Let (M,g) be infinitesimally isotropic and U be the

cosmological observer field. Assume that e + p0. Then there is an

(n - 1) -dimensional Riemannian manifold (A ,  ,) of constant curvature

F E f 1, 0, -11 such that (locally) M = R x M, g-dt2 + a2(t),, where

e/O = K _ I(dn(U)/(K + /_t) 2.
4

Proof. It is clear that g + A)-2dt2 + t for some t-dependent Rie-(r
mannian metric  t. Let u, v E Uj- be vectors with u I V, (u, U)
(v, v) = 1. Then Equation (6.1.2) gives with v = X, u = Y = Z

dK(U) = - (K + /,t) ( VvU, v) + (VuU, u ). Hence the second fundamental

form of the hypersurfaces perpendicular to U is given by

k = (u, VVU)
1 dK(U)g 1

OtKg.
2 K + /,t 2

The GauB equation gives

Rz, (u, v)w R(u, v)w + k(u, w)k(v, - k(v, w)k(u,

(/,z 1

( )2)4 r, + A
((v, W) u - (u, W) V) .
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2
1 (dr,(U)By the Lemma of Schur (Proposition 4.3.4) the factor n - -Z  

-

+- isT4 1z )
constant in the hypersurfaces. In other words, the hypersurfaces Et have

constant curvature. We can therefore write g + M)-2dt2 + a2 (t),,
where a: R ---> R+ is a function and , the (n - l)-dimensional metric of

constant curvature e E I - 1, 0, 11 -

We will now show that the factor 1/(n + M) can be absorbed into

dt. To this end we have to show that M only depends on t (recall from

the proof of Lemma 6.1.2 that dn(X) = 0 for each X E TZt and that

therefore r, depends only on t). Since n is constant in the hypersurfaces
t = const, so is at n. This implies that

at atK 2k = -

2
a g.

2
’

depends only on t. On the other hand, a direct calculation gives for

v,w E U1

k(v, w) = (V,’7wU) = (K + Y)  V,VwOt) = (K + /-t)gabva rcltwc
1

’t) VaWb =
1

vawc= (r- + P)
2
Ocgat + atgca - 19agc

2
(N + A)’Otgea

= (/-t + r,)aata,.

Comparing the two formulas for k we obtain that

(a0tK + K

 -ata

depends only on t. Hence (N(t) +p(t))-ldt is the differential of a function

which we take as our new time coordinate. I

Corollary 6.1.1. If (M,g) is infinitesimally isotropic then it is also

spatially homogeneous, i.e. for hypersurfaces Zt orthogonal to U and all

x, y E Zt there exists for any pair of orthogonal frames of Y: t, TyZt"
Z

an isometry M --> M which maps one of the frames into the other.

Proof This follows from Corollary 4.5.1 and Lemma 4.5.5 since (Eta2 (t)6
is a Riemannian manifold of constant curvature. I

Corollary 6.1.2. Let (M, g) be infinitesimally isotropic and U be the

cosmological observer field. Then there is an interval I (t-, t+) and

a spaceform (Z, ,) of constant curvature E E I - 1, 0, 1 such that the

universal cover of (M, g) is isometric to (I x Z, -dt2 +  ,) and U = at.

If n = 4 then there are local coordinates (t, r, 0,  p) such that

g = -dt2 + a
2
(t) ( I -1-r2 dr2+ r2 (d02 + sin2 (O)d 02) ) - (6.1.3)
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Proof The first part of the corollary is obvious since I x Z is simply con-

nected for any spaceform Z. The second part follows immediately from

the classification of 3-dimensional Riemannian manifolds with constant

curvature (cf. Lemma 4.5.5). 1

A spacetime (M, g) which is locally isometric to a 4-dimensional in-

finitesimally isotropic Lorentzian manifold is called a Robertson- Walker

spacetime or Robertson- Walker cosmology. The metric given by Equation
(6.1.3) is called the Robertson- Walker metric.

6.2 The initial value problem
for infinitesimally isotropic spacetimes

In this section we solve Einstein’s equations Ric - -1 Scal g + Ag = 87rT for
2

Robertson-Walker cosmologies. While, in general, Einstein’s equations
give rise to a system of partial differential equations, in the case at hand

we have already shown that the unknown functions depend on only one

variable. We will therefore obtain an ordinary instead of a partial system
of differential equation. This simplifies the problem greatly. However,
even this simple case exhibits typical aspects of Einstein’s equation.

We denote the derivative with respect to t with

Lemma 6.2. 1. Let (M, g) be a Robertson- Walker spacetime and u, v, w

be tangent to the hypersurfaces Et which are orthogonal to U. The cur-

vature expressions are given by

R(u, v)w = ( ()2 +
-’ ) ((v, w) u - (u, w) v), R(v, w)U = 0,

a2  2

R(v, U)U
a"

v, R(v, U)w
a"

(v, W) U,
a a

Ric(U, U) = -(n - 1)
a"

, Ric(U, v) = 0,
a

Ric (v, w) + (n - 2)
2 2 V, W)(’ +

6 )) (
a a a

Scal = (n - 1) (2 + (n - 2) (’ +
-, ))a a2  _2

Proof. The constant curvature metric

9z =

1
-dr2

+r
2 (d02 + sin2(O)dW2)-2

- 61

has the curvature tensor Rz (u, v)w == E ((v, w) u -  u, w) v) (Proposition
4.3.3). Hence the formula for R follows from Lemma 4.4.14. The other

formulas are direct consequences from Lemma 4.4-15. 1
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Corollary 6.2.1. If the energy momentum tensor is given by

T = (c + p)0 & 0 + pg,

then Einstein’s equation is equivalent to

87rE + A (n - 1)(n - 2) ( (a/)
+

6

(6.2.4)
2 a2 a2

and

87rp - A = -(n - 2) +
n 3 ((a? +

E

(6.2.5)( a 2 a2  2

Proof. Recall from Lemma 6.2.1 that the Ricci tensor Ric restricted to

the spatial subspace U,,-L is a multiple of the metric g restricted to this

subspace. It follows that Einstein’s equation Ric -
1 Scal g + Ag = 87rT
2

restricted to this subspace,

a//
+ (n - 2)

LaL)2
+

e

a a2 a2

n

2 + (n - 2)
(a?

+ + A) g 8-7Tpg
2 a a2   2

is equivalent to Equation (6.2.5). From Lemma 6.2.1 we get Ric(v, U)
0 for all vectors v J_ U which implies that the only other non-trivial

component of Einstein’s equation is given by evaluating it on the pair of

vectors (U,,, U,,). We obtain

at/ n-1 at’ (a’ )2
(n - 1)

a

+
2 (2 a

+ (n - 2)
a2

+
a2 )) -A)gjE = 87rEgIE

which is equivalent to Equation (6.2.4). 1

Observe that Einstein’s equation is not a well posed system of differen-

tial equations. Instead, we have only two equations for three unknowns,

a,,E, p. Moreover, only derivatives of the function a appear in our system
of equations. The first problem has a direct physical resolution. Just

specifying a perfect fluid is not enough to specify a matter-model com-

pletely. Rather, perfect fluids give a framework which is fitting for many

different matter models. In particular, vacuum is a (very degenerate)
perfect fluid, and so is dust. In order to arrive at a determined system of

equations we therefore have to specify an additional relation between the

energy density c, the pressure p, and the metric described by a. In the

following we make a rather simplistic assumption, namely that there is

a given equation of state: p = f(c) for some smooth function f : R --> R.

Having made this assumption, we still have the problem that we have
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two differential equations for a rather than a system of two differential

equation for a and E. We can resolve this problem by replacing one of

our equations with an equation of motion (Lemma 5.2.1).

Corollary 6.2.2. Assume that there is a smooth function f: R -+ R

with f (e) > - F_ for all 6 E R. Let ao G R+ \ f01 and 6o c R and assume

that
2 (ao )2

(81rEo + A) - e > 0. Then there exists a unique solution
Tn-- 1)_(n-2)

(a, c) of Einstein’s equations such a(O) = ao and e(O) = E0. The functions

a, E satisfy

(i) (n - 2)
a’

-8ir (f(c) + n-3.) + 2
A,

a n-1 n-1

(ii) (n a

a E+P

and

a’(0) 2(ao)2_
(8-7rEo + A) - (n - 1)(n - 2)

Proof. Assume first that a, E are a solution of Einstein’s equation. Equa-

tion (i) is a linear combination of Equations (6.2.4) and (6.2.5). Equation

(ii) follows from Lemma 5.2.1. Finally, the equation for a’(0) follows im-

mediately from the equation for E in Corollary 6.2. 1.

For the converse notice first that for our initial conditions there is a

unique solution a, E which satisfies the system of equations (i), (ii) and

[--2(ao)2
a’(0) =-

V 7 (87rEo + A) - We have to show that this solution
n -(n-2)

is also a solution to the system of equations given in Corollary 6.2-1. It

is clear that this system of equations is satisfied at t = 0. We will show

that the first equation is satisfied for all t. Since the second equation is

a linear combination of the first equation and equation (i), it must then

also be satisfied for all t. Defining

87rc + A - (n - 1)(n - 2)
2 22 a a

we have to show that 0 vanishes for all t. Taking the derivative of 0 and

using equations (i), (ii) gives

0’ = 87rE’ -
1
(n - 1)(n - 2)

2aa"a2 - 2aa’ ((a’)2 + 6)
2 a4

(i) a/
)
a’ a’/ (a/ )2 +6

= -8-7r(n - 1)a(E +p) - (N - 1)(N - 2
a (a a2

(ii) a’
)
a"

a

87r(n - I)E + (n - 1)(n - 2
a

+ 87r(n - 3)E + 2A

-(N-1)(N-2)a’ a’/ (a/)22+6
a (a a
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2a/
a

Since 0(0) = 0 and 0 is a solution of the differential equation 22 0,
a

the fundamental theorem for ordinary differential equations implies that

0 must vanish for all t. I

This solution of Einstein’s equation is typical in two aspects. Firstly, it

is often advantageous to exchange part of the original set of equations
for the equations of motion, div(T) = 0. Secondly, Einstein’s equations
are not a free system of differential equations but are constrained. Recall

that we were not free to choose a’(0) even though we had a second order

equation for a. In other words, only a restricted set of initial values

had the chance to lead to solutions of Einstein’s equation. The system
of differential equations which was solved was derived from Einstein’s

equation but not identical to it. We had therefore to show that the

solutions to this system are also solutions to Einstein’s equation. We

did so by deriving an additional linear differential equation and used

our constraint (i.e., the choice of a’(0)) to show that the solution of

this equation implies that the original set of equations is satisfied. This

phenomenon has a direct counterpart in more general settings where we

have to deal with systems of differential equations.

6.3 Geodesics and redshift

In 1929 Hubble made a cosmological discovery which implies that distant

galaxies are moving away from us (and each other) at a rate proportional
to their distance. This astronomical fact shattered the long cherished idea

that our universe was an eternal arena in which the physical processes

take place.2 It is instructive to describe Hubble’s discovery in slightly
more detail: Each star has a spectrum of light which contains char-

acteristic gaps due to absorption of light of certain frequencies in the

atmosphere of the star. Since we have physical explanations for these

absorptions, we can calibrate these patterns and thereby obtain infor-

mation about the chemical composition of the star’s atmosphere. Hubble

discovered that for stars in galaxies which are not too close3 these gaps

are shifted towards smaller frequencies. Moreover, this shift is propor-

tional to the distance of the galaxy. From his observation it was then

2Einstein introduced his cosmological constant a decade earlier because he

wanted to have static solutions in accordance with the prejudice of his time.

Had he not done so, there would have been another striking prediction by
general relativity.

3For very nearby galaxies the (local) movement of the galaxy relative to us

overshadows this effect.
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concluded that all galaxies are moving a-way from each other. (Everyone
is familiar with an analogous effect: If a fast car is approaching one has

the impression that the noise of the engine is higher pitched than when

it is moving away: In other words, if the source and the detector of a

sound move away from each other, the frequency of the sound appears

to be smaller).
In this section we will show that Hubble’s discovery can be under-

stood within the framework of Robertson-Walker cosmology (cf. Corol-

lary 6.3.2 below). This is one of the great successes of general relativity
and the isotropy assumption. Recall from Sect. 1.4.3 that we can describe

the world lines of photons by null geodesics. The energy of a photon -y

measured by an observer u is given by E = hv = - (u,  ). Here v denotes

the frequency of the photon (as measured by u) and h denotes Planck’s

constant. In Robertson-Walker spacetime we have a natural unit vector

field U which is approximately tangent to the world lines of the galaxies.
We will therefore define the energy of a photon using this distinguished
observer. In this section we will always refer to this energy.

Let -y be a photon which moves from x e M to y c M. In general,
it is possible that its energy is not constant along the world line of the

photon. This is traditionally expressed using the fractional increase z of

the associated wavelength A = 11v = hIE:

Definition 6.3.1. The redshift factor z of a photon originating at x

and being detected at y is given by

*1 Y)
A(Y) - AW

A(X)

If (t, Y), (t, Y) E I x Z are the events occupied by two galaxies, then the

distance of these events at time t is given by d((t, i), (t, Y)) == a (t)dz (Y, Y),
where dz (Y, Y) is the distance of Y and Y in (Z,  ,). We will show

that there is a constant H such that we have approximately z(x, y) ==

Hd((t, Y), (t, Y)) for galaxies which are distant enough for Hubble’s dis-

covery to hold but still so close that it is sensible to linearise z. To

this end we must first calculate the null geodesics in Robertson-Walker

spacetimes.

Lemma 6.3.1. Let (M, g) ::= ((t-, t+) x Z, -dt2 + a2(t) ,) be an in-

finitesimally isotropic Lorentzian manifold. The curve

8 F-+ -Y(s) = (t(s), 1(s))

is a aeodesic if and only if

d2t a’ dt
+ a(t)a’ = 0, 2 0

82
’Y, +

d a a,
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hold, where t denotes the induced covariant derivative on Z. If y(s)
(t(s), I(s)) is a null geodesic then the conservation equation

dt
a(t(s)) const

holds.

Proof. The first part follows immediately from the corresponding formu-

las for general warped products (Corollary 4.4. 1). Assume now that 7

lyis a null geodesic. From the first equation and a
2 (4, -4) = (dt/ds)2 we

obtain

d

(a(t(s))
dt

a’(t)
dt )2 + a(t)d2t = 0.

TS_ dS2

Corollary 6.3.1. Let (M,g) = ((t-,t+) x Z,-dt2 + a2(t)g,) be an

infinitesimally isotropic Lorentzian manifold. The curve s 1-4 -y(s)
(t(s), I(s)) is a null geodesic if

(i) -F 1-4 is a unit speed geodesic in (Z,
(ii) and there is a constant c such that

8 = C a(i) di, 1(s)
t (s) di

lyft. (ft,, a(i)

Proof.
Assume that  ’y’ is a unit speed geodesic and that the integral

equations (ii) hold. The curve -y(s) = (t(s), I(s)) is a null curve because

of

-(dt/ds)2 + a26
d z, d

(dt/ds)2J_T  2( dT
= (dt/ds)2 1 +  ,

d v d Z,

0.
d-r

Y7 V/r )) =

It follows from the first integral equation in (ii) that adt/ds is constant.

Hence the first equation in Lemma 6.3.1 follows from

0 =
d (a(t(s))

dt

)= a’(t)
dt )2 + a(t)d2t

ds a-s ( TS_ dS2

and the fact that -y is a null curve. The second equation follows also by
direct calculation:

t - ,=
I

t7 d =’

I d

 )
-2 da d z, -2 da.:,

Y c2a2 a7r’y ( a2 d-F c2a5 d-r d-r a ds
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where we have used d’ 1 d’
-

I

ds ads ale-*

To see that all null geodesics can be described this way it is sufficient

to notice that (up to a, niultiple) any null vector can be realised as 9t + e

where e is a unit -vector tange,,-iat to ’S4,

Proposition 6.3.1. Let (M, g) be infinitesimally isotropic and 7 be a

photon which moves from x c M to y c M. Then

Z

a(t(x))
1.

Proo
.
From Lemma 6.3.1 we get that a(t)  ! is constant. Hence Ef ds

- (U, jd;t implies that A/a = h/(a(t) jdt,) =: k is constant. Insertingds ds

A = ka in the definition of z proves the claim.

Corollary 6.3.2. Let xo = (to, Yo) E M. Then the frequencies emitted

by nearby galaxies (situated at y = (t,:V) E M) appear to be red-shifted
at xo by

z   Hto d((to, Yo), (to,: o-)),

where Hto = a’(to)/a(to) is the Hubble "constant" at xo.

Proof. We assume that dz ( Fo, go) < 1 which in turn implies It - to I < 1.

Hence we obtain a(t)   a(to) + (t - to)a’(to) and therefore

a(to)
1 ;:z 

a(to)
1z

a(to) + (t - to)al(to)

- I ;:z -(t - to)Ht(,.
I + (t - to) Ht(,

Since the speed of light is I and t < to we have t-to   -d((to, Yo), (to, jjo-)
which implies the assertion

6.4 The age of the universe and the big bang

At our time to the Hubble constant Ht,, = a’(to)/a(to) is positive.
In the introduction of the preceding section we have given a heuristic

argument which indicates that universe is expanding because of the red-

shift of light emitted from nearby galaxies. In this section we we will show

that the observation of Hubble implies that there has been a big bang (if
infinitesimal isotropy holds). In order to do so we need an assumption
which eliminates the unphysical cases that
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- a is simply not defined on its maximal domain or that

- a is not everywhere differentiable where it is defined.

We will therefore assume that E, p: I R can be continuously extended,
unless they become unbounded or a 0. If this assumption would not

hold then there would exist an extension (i x Z, -dt’ +  ,) of spacetime

such that at a(I x Z) C f x Z matter would miraculously disappear or

spring into existence.

Theorem 6.4.1. Let (M, g) = ((t-, t+) x Z, -dt2 + a2 (t)&) be an in-

finitesimally isotropic, C2- -maximally extended Lorentz manifold of di-

mension n > 3. If

(i) there is a to E (t-, t+) with Hto > 0

(ii) E, p are continuous on (t-, t+),
(iii) e +A/(87r) > 0,

(iv) there exist constants c such that E and p satisfy

n - 3
< c_ :5

p - Al (81r)
<

n - I c + AI(8-x)
-

then t- > -oo. In addition, we have limt-t_ a(t) = 0 and limt-t_ a’(t)
limt,t- a2(t)(6(t) + A/(81r)) = oc. For t+ there are the following possi-

bilities.

8 1 t+, lim. a (t), lim. a’(t) lim. a’(t)(E(t) + A/(8?r))
t t+ t-t+ t-t+

-1 00 00 1 0

0 00 00 0 0

1 finite 0 -00 00

Proof If c can be extended beyond t- or t+ as a bounded function so call

p. For given E, p, Corollary 6.2.2 (i) can be viewed as a linear differential

equation of second order for a. Consequently, if t is finite, a could be

extended as a C2- function if it is not infinite (Dieudonn6 1960, Remark

10.4.6). This implies liminft,t, a(t) = 0 or limsupt-t, a(t) = 00 since

(M’ g) is C2--maximally extended by assumption. Conditions (iii) and

(iv) imply that 8,7r + n-3. 2A/(n - 1) is positive Hence a" (t) < 0(P n-1 ) -

for all t by Corollary 6.2.2 (i). The function a’ is therefore monotone and

we can replace lim inf (and lim sup) by lim for a and a’.

First we investigate what happens near t-. The inequality Hto > 0

implies the inequality a(to) > 0. Since a"(t) :5 0 for all t, the graph of

a lies below the graph of the map t  -4 a(to) + a’(to)(t - to). This linear

graph intersects the (a = 0)-axis at to -
a(t)

< to which implies that t-
a, (to)

is finite: t- E [to - a(to)/a’(to), to). Since p - A/(87r) > c- (,E + A/(87r)),
there is a 6 > 0 with
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E +p
3 J

(I + c-)(f, + A/(87r)) >
n

)(E + A/ (87r))

2 + J
+ A/(87r)).

Hence Corollary 6.2.2 (ii) implies (E + A/(87r))’ -(n - 1)(E +p)a/a <

-(2+J)(e+A/(87r))a’/a and therefore ((E+A/(81r))a2+6)’ < 0. The equa-

tion limt-t, a(t) == 0 implies now immediately that limt,t- O(E(t) +
A/(87r)) = oo. From the equation for the energy density c in Corollary
6.2.1 we infer that (a/)2 diverges also.

For t --> t+ there are several possibilities. If a has no maximum

then limt,t+ a(t) = oo. a" < 0 implies that t+ = oo. Since ((E +
A/(87r))a2+J)’ < 0, the function (e + A/(87))a2+6 is decreasing which

implies limt-t+ (E(t) + +A/(8ir))a2(t) = 0. The equation for the energy

density E in Corollary 6.2.1 implies now that - < 0. The assertions about

limt-t+ a’(t) follow from the same equation. Note that a must have a

maximum if 6 = 1.

If a has a maximum at some tj E (t-, t+), 87rE(ti) + A = -I(n- 1)(n -

2(tl)
2

2)E/a whence E = 1. Since a"(ti) < 0 we have a’(t2) < 0 for some

t2 E (ti, t+) and we can - by time reversal - apply the same argument
as for t -+ t-. This proves limt-t+ a(t) = 0, limt-t+ a(t) = -oo, and

limt-t+ a2 (t) (E (t) + A/(87r)) = oo. I

Corollary 6.4.1. If our universe is described by a Robertson- Walker

model without cosmological constant, then it is younger than 11Ht.

To obtain a numerical estimate note that according to measurements of

the luminosity of stars (so-called "standard candles") located at different

distances one arrives at Ho = 1.7 - 10-18s-1 (Wald 1984, p. 114) (see
also (Weinberg 1972)). Since I year = 60 .60 .24 .365 s we obtain that

the universe should be younger than 11HtO = 2. 1010 years. Wald (1984)
also quotes experimental evidence which points to values for HO which

are twice as high. This would imply that the universe is less than half

as old as indicated above.

Part of Theorem 6.4.1 can be generalised to locally spatially homoge-
neous universes which are not necessarily isotropic (Rendall 1994). With

respect to the significance of the assumption A = 0 cf. Remark 5.3.3.

Example 6.4.1. The inequality -

n_3
< C_ <

p-A/(81r)
is sharp. This

n-1 - E+A/(8ir)

can be seen from 3-dimensional dust spacetimes. We solve the system of

differential equations (i), (ii) of Corollary 6.2.2. Both equations decouple
since p = 0 and n = 3. Equation (ii) implies that there is a constant

k c= R with r- = ka2. Equation (i) reduces to a" = -Aa, whence a(t) =

k+ell At
+ k-e-11 A’. From our initial data ao, 60 we obtain a’(0) =

V/-(87rf-o + A)(ao)2 - E and therefore
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- V(8 7r co + A) (ao)2 - s sin(VA-t)
a(t) ao cos(vAt) +

v/A_

for A > 0,

a(t)
(ao A - V--AV(8,7r co + A) (ao) 2

e
 /=_At

2 A

I-A

(ao A + vf--AV(8,7r co + A) (ao) 2 e- v
At

+
2 A

for A < 0, and

a(t) =: ao + V8 (ao)27r co - E t

for A = 0. If e = 1, A < 0, and the initial data ao, 60 are chosen such

that (,Eo + A) (ao )2 = I then we obtain solutions without singularities.

Remark 6.4. 1. Observe that the metric of Robertson-Walker spacetimes

differs from the non-singular Lorentzian manifold

((t-, t+) x Z, -dt2 +
I -Isr2 dr2+ r

2 (d02 + sin2(O)dW2) )
only by an overall-factor a2. (We say that these pairs of spacetimes

are conformally equivalent). This implies that there are past light cones

which do not intersect. In particular, there are regions in the universe

filled with particles which may never have had a chance to interact.

This raises a serious problem. In physical theories, homogeneous states

are usually obtained by the statistical description of microscopic states.

In particular, homogeneity is always a result of prolonged interaction.

If there are regions in the universe which cannot have interacted with

each other in the past, then we need a new explanation why they are

so similar that we can describe the universe as homogeneous. Physicists
are currently trying to find an answer to this question by arguing that

during the early phase of the universe the expansion was much faster

than would be plausible if one considers ordinary matter. Under this

assumption, these regions would have had a chance to interact after all.

However, the physicists favouring this inflational universe are Still4 very

far from a satisfactory physical explanation for the occurence of this

"inflationary" phase in the history of the universe.

’ I write this in 1998.
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6.5 A simple model for the universe we live in

In this subsection we will discuss two especially simple cases in which

Einstein’s equation can. be explicitly sol-ved. They are of special impor-
tance since they are bn with qualitative expectations of the

development of the universe. At present’, there seem to be two principal

types of matter which fill the universe. To simplify matters we may as-

sume that today most of the matter consists of galaxies5. Galaxies do not

move much relative to each other and are too far apart from each other to

interact. It is therefore a good description to model them by pressure-less
dust. The universe is also filled with radiation which was the dominat-

ing form of matter during the early stages of the Universe. This ’cosmic

microwave background radiation has been discovered by’Penzias and

Wilson (1965) ’. The most important feature of this microwave back-

ground radiation is that it is (almost) completely isotropic and therefore

cannot be explained by a confined source which is located somewhere in

the universe. The radiation is now very weak (having a temperature of

about 2.7 Kelvin) and its energy is completely dominated by the energy

contribution from the galaxies -
The microwave background radiation can

be described by a photon gas. The energy momentum tensor of a pho-
ton gas is traceless by Lemma 5.2.3 which, together with infinitesimal

isotropy, implies E = (n - I)p.
We will not consider the composed system which consists of dust

and radiation but only the much simpler cases where we have pure dust

or pure radiation. At the end of the section we will give a heuristic

justification.

Lemma 6.5.1. Let (M, g) = ((t-, t+) x Z, -dt2 + a2 (t)g,) be an in-

finitesimally isotropic Lorentzian manifold of dimension n > 3 and as-

sume that the function a is non-constant. Then the following statements

are equivalent.

(i) P = 0

(ii) ca" = m is constant,

(iii) (n - 1) (n - 2) ((a’ )2 +6) = 16,7rma3-n + 2A.

Proof. The equation p = 0 is equivalent to (n - I)a’/a +,E’/e = 0 because

of Corollary 6.2.2 and a’ 54 0. An integration shows that this equation
is equivalent to can-1 = m for some constant m. The equivalence of (ii)
and (iii) is clear from the formula for E in Lemma 6.2.1. 1

5
However, it is expected that most of the matter is "dark" which is an eu-

phemism for "we cannot directly observe it and do not know anything about

it".
6
The discoverers where concerned with the development of a new satellite

communication system and found that their new high precision antenna

seemed to have an unexplainable background noise.
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In the physically interesting case n = 4, A = 0, the differential equations

in Lemma 6.5.1 (iii) can be solved explicitly and their solutions are given

by

E a t

-1 lc(l - cosh(d))2 _71-c(O - sinh(i9))
0 (9c/4)1/3t2/3
I !C(l - cos(’0))2

lc(,o - sin(79))2

where c is a constant of integration.

Lemma 6.5.2. Let (M, g) = ((t-, t+) x Z, -dt2 + a2(t)g,) be an in-

finitesimally isotropic Lorentzian manifold of dimension n > 3 and as-

sume that the function a is non-constant. Then the following statements

are equivalent.

(i) E = (n - I)p
(ii) Ean =,M is constant,

(iii) (n - 1)(n - 2) ((a’)2 + 6) = 161rma2-n + 2A.

Proof. The equation 6 = (n - 1) is equivalent to (n - 1) + 0
a n e

because of Corollary 6.2.2 anda’ : 0. Integrating this equation we obtain

Ean = m for some constant m. The equivalence of (ii) and (iii) is clear

from the formula for c in Lemma 6.2.1. 1

In the case n = 4, A = 0 the resulting differential equations can be solved

explicitly and the solutions are given by

-

E t 1-4 a (t)
-1 C. ’F_j + (1 + t/C)2
0 (4C2)1/4VFt
1. CVj_ - (I - t/C)2

where c: is a constant of integration.

We will make the assumption that the interaction between both types

of matter is negligible. Observe that due to the formulas (ii) in Lemmas

6.5.1 and 6.5.2, radiation dominates at early times (a < 1) and dust

dominates at late times ((a >> 1). Hence it seems to be a good approx-

imation to use the radiation model for the early universe and the dust

model for the present universe.
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This chapter serves two purposes. Firstly, a large isometry group simpli-
fies the problem of solving Einstein’s equation considerably. Virtually all

explicitly known solutions of Einstein’s equations for physically plausi-
ble matter fields have a high degree of symmetry. Secondly, a spherically

symmetric spacetimes are very good descriptions of non-rotating, iso-

lated stars and therefore of astrophysical interest. (If the star rotates

the rotation axis breaks the symmetry). In Sect. 7.2 we will see that

there is a unique 1-parameter family of spherically symmetric solutions

to Einsteins’s equation for vacuum with vanishing cosmological constant.

The parameter can be interpreted as the mass of the isolated star. If the

mass of the sun is chosen, one obtains an excellent model of the gravi-
tational field in our solar system. Some aspects of this model have been

verified experimentally. These solutions also form the basis for much of

our intuition of black holes.

In this chapter we will also discuss the initial value problem for the

case that the energy momentum tensor represents a perfect fluid to-

gether with a non-interacting electric field (cf. Sect. 7.4). While in this

more general case we will not obtain explicit solutions we will neverthe-

less arrive at a non-trivial existence theorem for the considered class of

spacetimes. This section will hardly be of primary interest to a geomet-

rically oriented reader. Since the discussion uses elements of the theory
of systems of hyperbolic partial differential equations even physically
oriented readers may wish to skip the proofs on first reading.

The validity of the physical conclusions from this (and also the fol-

lowing) chapter depends very much on the question of whether the cor-

responding properties of our explicit solutions are stable under perturba-
tions. We know only very little about the stability of Einstein’s equations.
Since they are highly non-linear it is well possible that these properties
have little to do with our actual universe which has only "approximate
isometries".

ute
M. Kriele: LNPm 59, pp. 307 - 355, 1999© Springer-Verlag Berlin Heidelberg 1999
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7.1 Pseudo-Riemannian manifolds

with spherical symmetry

A property in R3 is spherically symmetric if it is invariant under rotations

about the origin. The rotational isometries defined below form a group
which is (locally) isometric to the rotation group SO(3). We take this as

our main justification of the following definition.

Definition 7.1.1. A pseudo-Riemannian manifold (M, g) is called

spherically symmetric if it has a dense open subset M’ such that (MO, g)
can locally be written as a warped product (Z x S’, gz + r’dS?’), where

dQ’ is the metric of the 2-dimensional unit sphere, (Z, gz) an (n - 2) -

dimensional pseudo-Riemannian manifold, and r: Z ---+ R a positive
function.

The sets fxJ X S2 (x E Z) are called spheres of symmetry and those

isometries which map all spheres of symmetry into themselves are called

rotational isometries. The set C = M \ M’ is the. centre of symmetry.

Lemma 7.1-1. Let (M,g) be a spherically symmetric spacetime and

(Z, gz) be the 2-dimensional Lorentzian manifold orthogonal to the sphe-
res of symmetry. For each frame f U, QJ of (Z, gz) with

(U’U)=-1’  U’Q)=O’ (Q’Q)=I’

there are adapted coordinates with respect to which

g = - e2v(t,q)dt2 + e2,\(t,q)dq2 + r2 (t, q) (d02 + sin20 dW2)

and U = e-’,9t, Q = e-’\’9q-
In these coordinates the energy momentum tensor T is given by

87rT(U, U) =
1

(1 + (U * r)
2
_ (Q , r) 2)

r2

+ 2(-Q * Q* r + (U* A)(U* r)) - A,
r

87rT(U, Q) = - 2(U - Qr - (Q - OW - r)),
r

87rT(Q, Q) = -

1

(1 + (U * r)2 - (Q 9 r)2) 72

+ 2(-U e U * r + (Q 9 v)(Q e r)) + A,
r

87rT(V, X) = 0 for all X E TZ and V E TZ-L,

81rT(I’22, (911 ) = 81rT(aI a,
r r r sin (0) 1

r sin (0)

= Q,, Q 0 V + (Q * V)2 _ U U,, A _ (U 9 A)2

+ U * U * r + Q * Q r - (Q e v)(Q * r)
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- (U o A)(U + A,

87rT(’90, 01* 0.
r r sin(O)

Proof. The existence of the adapted coordinates (t, q, 0,  o) is clear from

Corollary 2.4.2. Hence we only need to calculate 8,7rT = Ric - 1 Seal g +2

Ag. By Lemma 4.4.15 we have for X, Y tangent to Z and V, W orthogonal
to E

1 2
Ric(X, Y) = -Scalz (X, Y) - -VVr(X, Y),

2

Ric(X, V) = 0

Ric(V, W) = I(V, W) -

Ar
+

I
(grad(r), grad(r)) (V, W),

r2 ( r r2

2 4 2
Seal = ScalE +

 _2- r

’Ar -
 _2 (grad(r), grad(r))

Since VVr(X, Y) = X e Y 9 r - VXY * r we obtain

VVr(U, U) = U 9 U * r - (Q * v)(Q o r),

VVr(U, Q) = U o Q o r - (Q * v)(U o r) = Q o U 9 r - (U *,\)(Q 9 r),

VVr(Q, Q) = Q o Q 9 r - (U 9,\)(U o r)

which in turn impliesAr = -U* Uor+Q oQ or+ (Q*v)(Q or) - (U 9

A) (U 9 r). Hence we get

87rT(U, U) IScal_r -2(U*Uor-(Qov)(Qor)) +
1

(ScalE
2 r 2

2 4(-U*Uor+Q*Qor+(Qov)(Qor)-+
72

-

r

2
(_(U 0 02 )2))(U 0’\)(U 0 r)) - 72

+ (Q or - A

I

(I + (U 0 r)2 _ (Q 0 r)2) 2
2

_r(Q*Qor-(U*A)(Uor)) -A,

87rT(U, Q) = - 2(U o Q o r - (Q o v)(U o r)),
r

87rT(Q, Q) = IScalz -2(Q*Qor-(UoA)(Uor)) -

I
(Scal-v

2 r 2

2 4(-U o U or +Q o Q *r+ (Q ov)(Q or)-+
 _2

-

r

2
)2 )2))(U o A)(U 9 r)) -  -2(-(Uor +(Qor + A

1(1 + (U 9 r)2 - (Q o r)2) 2
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2

(U 9 U 9 r - (Q 9 v)(Q o r)) + A.

Let X c TZ and V c (TZ) 1. Since Ric(V, X) = 0 and (X, V) = 0

it is clear that 87rT(X, V) = 0. Since there is an isometry which maps
’90 into a,

we have 87rT(00,’90) = 81rT( a" a P ). The Ricci
T r sin(O) r r r sin (0) 1 r sin (0)

tensor restricted to (T.,Z)J- is a multiple of the metric which implies

T(-’91-, ’91" ) = 0. Finally, we the last component of T which needs to
r r sin (0)

be calculated is given by

87rT( L11,21-1)=
1

-(I(-U*Uor+Q*Qor+(Qov)(Qor)r r  2 r

- (U 9 A)(U 9 r)) +
I

(U 9 r)2 + po r)2) 2
1 2 4

-

2
(Scalz + 72

- r(-Uo Uor+ Q 9 Q or

+ (Q 9 v)(Q o r) - (U 9 A)(U o r))

2-(-(U o r)2 + (Q 0 r)2)) +A72

(- U*U*?-+Q*Qor
r

+ (Q o v)(Q 9 r) - (U o A)(U 9 r))
_ (U 0 U 0 A + (U 0 A)2 _ Q 0 Q 0 V _ po V)2) + A,

where in the last equation we have used

Scalz = 2(U 9 U *,\ + (U 0 A)2 _ Q 0 Q 0 1’, _ (Q 0 ,,)2)

(cf. Proposition 4.3-5).

We will now re-arrange these equations in a form which is more practical
if one wants to solve them. We will not do this in complete generality but

rather assume the following genericity assumption on the matter model.

Recall that for any normalised timelike vector v the number T(v, v)
represents the energy density measured by u. This number should be

positive. For null vectors N we obtain then T(N, N) > 0 by continuity.
Given a non-extreme matter distribution it is therefore plausible to ex-

pect T(N, N) > 0 for all null vectors N. In this case it is always possible
to diagonalise g and T simultaneously (Greub 1981, Chapter IX 3).

Lemma 7.1.2. Let (M, g) be a spherically symmetric Lorentzian man-

ifold and T be a symmetric (0) tensor field which is also spherically2

symmetric. Assume that T and g can be simultaneously diagonalised.
Then there exist coordinates (t, q, 0, W) such that

g == -e2v(t,q)dt2 + e2,\(t,q)dq2+ r2(t, q) (d02 + sin20 d(P2)’ (7.1.1)
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T = E0 0 0 + PradQ Q + Psphr2(t, q) (d02 + sin20 d(P2), (7.1.2)

where U := e-’,Ot and Q e-AOq are invariantly defined if E ’7 -Prad-

Moreover, Einstein’s equation, Ric - Scal/2 g + Ag, = 87rT is equiva-
lent to the system of differential equations

1 + (U 9 r)2 - (Q * r)2
Q*Q*r= (Uer)(U* A)+

2r

47rr(,E +
’A

(7.1.3)
87r

Q*Uor = (Q*r)(U* A), (7.1.4)

1 + (U e r)2 _ (Q 0 r)2
U*U*r= (Qor)(Qov)-

2r

A
- 41rr(Prad - - ), (7.1.5)

8,7r

UOUOI\= _(U*,\)2+Q*Q.V+(Q.1.,)2+
1+(Uor)2 - (Q * r)2

r2

- 47r (E - Prad + 2p,ph) 7 (7.1.6)

and the equation of motion, div(T) = 0, is equivalent to

U + Prad)U 0 A - 2(E + Psph)
U e r

(7.1.7)
r

Q 0 Prad (E + Prad)Q * v - 2 (Prad - Psph)
Q*r

(7.1.8)
r

Proof. Lemma 7.1.1 implies that T satisfies

- T(X, V) = 0 for all X E T Z, V E (TM)’
- and T(V, V) = T(W, W) for all unit vectors V, W E (-- Z)

Since by assumption there is a frame which diagonalises the energy mo-

mentum tensor T and the metric g simultaneously there must exist vector

fields Q, U tangent to Z and functions r, E, Prad i Psph: Z --> R such that

g = _U5 (j5 + Q (& Qb +r2dQ2,

T = EW W + Pra& (D Q + Psphr2dp2.

The existence of adapted coordinates follows now from Corollary 2.4.2.

That Einstein’s equations are equivalent to Equations (7.1.3)-(7.1.6) fol-

lows immediately from the definitions Of E7PradiPsph and Lemma 7.1.1.

Observe that for any vector fields X,Y tangent to Z the decomposi-
tion VXY = -"VXY and that for any vector fields V, W tangent to the

spheres of symmetry the decomposition VVW (V7 W) grad(r) +
S2
VVW holds. Using Proposition 4.3.5 we obtain

div(T) = (dE(U) + ediv(U))W +,E(VUU) + (dPrad(Q) + Praddiv(Q))Q’
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+ Prad(VQQ)5 + (Psphdiv(
I
i9o)) r dO

r

+ Psph V I
ao

I
ao + Psphdiv a ,)r sin(O)d(p(

r r r sin(0)

+ Psph V I aw(
r sin(o) aw

= (de(U) + E((U 9 A) + 2(U + Prad (U * A))U
5

r

 (dPrad (Q) + Prad ((Q 0 V) +
2
(Q Or)) +,E(Q. v))Q5

r

 Psph
cos(O)

dO - 1dr + 0 + o - Idr
- dO)

r r sin(O)

= (dE(U) + E ((U 0 A) + 2(U * r)) + Prad (U * A) + 2Psph
U r

U5
r r

+ (dPrad (Q) + Prad ((Q 0 V) + 2(Q e r)) +e(Qe v)
r

- 2p.,ph r) Q5,
r

where we have used Proposition 4.3.5 to calculate

S2
div(,9o) dQ2(S2,Vao 190,ao + dQ2(S2,7 9W ao

sin(O) sin(O)

cos(O)

sm(0)

S2
div(

aw
dQ2(S2,Vao ao) = 0.

sin(O) sin(O)

The functions U A and Q * v are well defined invariants since the com-

mutator of U and Q is given by [U, Q] = (Q * 1/) U - (U . A) Q.
For spherically symmetric spacetimes we can define an invariant func-

tion which can be interpreted as a mass.

Definition 7.1.2. Let (M, g) be a spherically symmetric spacetime.
Then its mass function m is defined by m :=:= 11 (1 - (grad(r), grad(r)))2

The term "mass function" can be motivated under the additional as-

sUmptions that there exists a centre of symmetry, that Q * r >_ 0, and

that it is possible to diagonalise, g and T simultaneously. Recall from

special relativity that mass and energy are equivalent concepts and that

the energy of a point particle measured by an observer depends on this

observer.
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In order to determine the mass of a material object consisting of

particles in spacetime we would first fix a spacelike hypersurface rep-

resenting an instant of time. The mass of each particle which intersects

this hypersurface would be measured by the infinitesimal observer repre-

sented by the normal of the hypersurface (cf. Sect. 1.4-3). The sum over

all these numbers is then the mass of the material object with respect

to the chosen hypersurface.
Since we assume that we can simultaneously diagonalise g and T there

must be a timelike eigenvector of the linear map Tab9bc. Observe that

it is unique if E -Prad. In this case it is orthogonal to the spacelike

hypersurfaces t const. In other words, the hypersurfaces t = const

are invariantly defined. This indicates that we should use this family of

hypersurfaces in order to define mass.

Multiplying Equation (7.1.3) with Qer and inserting Equation (7.1.4)
we obtain ft(c + A)r2Q * r = Q e (r(l + (U * r)2 - (Q * r)2)) =2Q*m

81r

and therefore

m(to, qo) = 47r

r(t qo)

C+
A

r2dr where t = to is fixed.in 87r )
(7.1.9)

This integral can also be written as a volume integral,

m(to, qo) C+
A

) r2 sin(O) dr A dO A dWJB (  _Ir

A

),r2 sin(O)(Q 9 r)e- ’dq A dO A d o

(6+
A

) (Q 0 r) (U J 1-tB)
8?r

where B is the ball Ix E M : t(x) = to, &) < qo 1. Equations Q * r = I

and A = 0 would imply that we had just an integral over the energy

density c which - in view of E me
2

,

can also be interpreted as a

mass density. If, in addition, Prad Psph 0 then T represents a smooth

3-parameter family of freely falling particles and we would obtain the

smooth analogue to the motivation using individual particles above.

In general, however, Q * r = 1. This reflects that one also has,to take

into account the energy contribution of the gravitational field.

Lemma 7.1-3. Let m be the mass function of (M, g). Then

U * m = -47rr2(U 9 r) (Prad -
A

87r

Q*m=47rr2(Q*r) E+ A)8,7r
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Proof. We have Us Qer = Q*Uor+[UQjor= Q*Uor+(Q*v)(U*
r) - (U o A) (Q o r). By Lemma 7.1.2 we can calculate

QOM Q. (r (I + (U o r)2 - (Q o r)2))
Q o r

2 r

+ r (yQ o U o r - (Q o r)Q 9 Q a r)

Qor
m + r((U o r)(Q o r)U e A - (Q o r)(U o r)U A

r

- (Q o r)Tn + 47rr(Q o r) e +
A

81r)
47r(Q o r)r

2 (6+ A)8,7r

and

U 0 M =

Uor
m + r ((U o r)U o U o r - (Q o r)U 9 Q o r)

r

=

Uor
m+r (Uor)(Qor)Qov-(Uor)m,

r

- 47rr(U 9 r) (Prad A
(Q o r)Q o U o r

87r

- (Q e r)(U o r)Q o v + (Q 9 r)2(U O’\))

=

Uor
m, + r -m(U 9 r) - 47rr(U o r) (Prad -

A

r 87r

= -47rr’(U o r) ad -
A

(A: 87r

While orthogonal coordinates are often very useful double null coordi-

nates introduced below are much better adapted to the geometry of

spherically symmetric spacetimes.

Lemma 7.1.4 (double null coordinates). Let (M,g) be a 4-dimen-
sional spherically symmetric Lorentz manifold. Then there exist local co-

ordinates (u, v, 0,  o) and functions G: (u, v)  --+ F(u, v) E R, r: (u, v)
r(u, v) E R such that

g = G(u, v)dudv + r
2
(U, V) (dO’ + sin2(O)dW2)

The function G is unique up to transformations of the form u  -4 ft(u)
v i--* b(v) and interchanging of the coordinates.

In these coordinates, the Christoffel symbols are given by

1
u

2rc9vr
Fu’ = 9,, (In r), I’& = FufV == 9u (In G), FouO ==

sin
2
(0)

rWp
G
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F,v, = Ov (In r), Fv00 = r, ’. = 0, (In G), r.V, =
I

V

2r8,,r

sin
2
(0)

FVW
G

I I"

F11W sin(O) cos(O)ow
=

sin(O)
I  Wo

Proof. Since in a two-dimensional Lorentz manifold there exist for each

point exactly two linearly independent, lightlike directions, the existence

assertion follows immediately from Definition 7.1.1 and Corollary 2.4.2.

Let ft, f) be coordinates and 6(fi, 0),  (ft, f)) be coordinates with

g = G(fi,,b)dftdb +  2 (,a, f)) (d02 + sin2(O)dW2). Since the warped product
is invariantly defined we have G(u, v)dudv = G(ft,  ))dftdb. At each point
of a 2-dimensional Lorentzian manifold there are exactly two null direc-

tions whence we can assume (without loss of generality’) that there exist

functions fu, fv with a, = fuau and af, = f,,9,. Since the commutator

of GauBian vector fields vanishes we obtain

0 = VUau I fV 19,11 = fuAfV) 191, - fl, (C’)V fu)au

and therefore a,,f, = avfu = 0. This implies fi f fu(u)du and b

f f,(v)du.
It is straightforward to calculate the Christoffel symbols using the

formula Fbac =
I gad I
2 (abgdc + acgbd - adgbc) -

Remark 7.1.1. The function r: M -4 R gives the area of the orbits S., via

the equation Area(S.,) = 41rr2and is therefore invariantly defined. That

G is almost an invariant is one of the two main reasons why double null

coordinates (u, v) are a very practical choice. The other reason is that in

these coordinates the causal structure of (M, g) is explicitly described.

7.2 The Schwarzschild solution

In this section we will solve Einstein’s equation for the case of a spher-
ically symmetric vacuum spacetime. These solutions describe the grav-

itational field caused by a single non-rotating star which is situated in

empty space. As the sun rotates rather slowly and space is almost empty,
these solutions describe gravitation in the solar system very well.

Theorem 7.2.1 (Birkhoff). Let (M, g) be a spherically symmetric vac-

uum spacetime. Then either r =
1

is constant and the mass function is
A

given by m = 11(2VA-) or there is a constant mo and a dense, open subset

M’ C M such that each x E M’ admits a local coordinate neighbourhood
with local coordinates (t, r, W, 0) which satisfy

’ Otherwise we exchange ft and f;.
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9=
2mo

_

r
2A

dt2+
dr2

+ r2 (d02 + sin2(0)d(P2)
r 3 2mo r2A

r 3

Proof. Lemma 7.1.3 implies

U * M = U 0

Ar3) and Q * m = Q 9

Ar3)( 6 ( 6

Hence there is a constant ?no such that m = mo+
A3

.
If (Qor)2 = (Uor)26

in an open set then from the definition of m we get mo +
Ar3

which
2 6

in turn implies that r = const. Since T = 0 we can choose coordinates

which simultaneously diagonalise g and T. Equation (7.1.3) implies then

r2= 1/A and we obtain m = r/2 = 1/(2v/A).
Let us now assume that gO (dr, dr) = -(Ugr)2 + (Q * r)2 : 0. There

are orthogonal coordinates (4, T) such that r = 4. Since T = 0 this choice

of coordinates trivially diagonalises g and T simultaneously and we can

assume without loss of generality that in Lemma 7.1.2 we have t = t,

q = 4. We immediately obtain U * r = e-’atq = 0. Hence Equation

(7.1.4) yields U e A = 0 and Equation (7.1.3) implies

m Ar mo Ar
Q*Q*r=

 _2_ 2 r2 3

Since Q = e-Aar this equation is equivalent to

e-
2A
arA

Mo Ar

_ 2
+

3

and can be integrated to give

e-
2A
= A(t) -

2mo r2A
= A(t) -

2m

r 3 r

where A(t) is an integration constant. Equation (7.1.5) implies e
- 2AarV =

2Y- - A-- and therefore e-2AarV = -e
-2X,9rA which in turn yields v =

r 3

B(t) - A. After a re-parameterisation of t we can choose B = 0. Tn

r (1 _ (Q,,,r)2) = L (1 - e-2A) L(l - A + 2m/r) implies A(t) = 1 and
2 2

the assertion is proved.

Observe that any spherically symmetric vaccum spacetime is automati-

cally static in the region gO (dr, dr) > 0. In the region gO (dr, dr) < 0 it is

not static but has a fourth spacelike Killing vector field.

This spacetime has (for A = 0) first been obtained by Schwarzschild

(1916) who solved the static, spherically symmetric vacuum equation.
Birkhoff then showed that staticity was not needed as an assumption.



7.2 The Schwarzschild solution 317

Definition 7.2.1. A spherically symmetric vacuum spacetime with van-

ishing cosmological constant (M, g) is called a Schwarzschild spacetime
2

The coordinates (t, r, W, 0) are called Schwarzschild coordinates.

In the rest of this section we will assume A = 0.

The regions r < 2m and r > 2m cannot be matched naively using
these coordinates (cf. Fig. 7.2.1 which represents the causal structure),
and for some time it has been believed that there is a physical singularity
at r = 2m. Below we will geometrically determine more useful double

null coordinates of the solution. This will show that r = 2m is a spurious

singularity and that there exists a unique, inextensible solution of the

spherically symmetric vacuum equation.

Fig. 7.2.1. Schwarzschild spacetime in Schwarzschild coordinates

Proposition 7.2.1. With

r 2
r/(2m)f : R+ \ fOf --> (-oo, 1), r F--> f (r) = - I-

M

e

2m ( r )
F: R+ \ 101 -+ R+ \ fol r F-4 F(r) =

32m3 e-’l (2m)I
r

let B ,chw (X, Y) E R
2

: XY < I I and F of (XY) dXdY.
Then the Lorentzian manifold

(R2
X S2, 9B,;cl,, + (f-I(Xy))2 (d02 + sin2(0)d(P2

satisfies Ric = 0. The coordinates (t, r) of Theorem 7.2.1 and (X, Y) are

related through

XY = f(r).ln ( X) t

Y 2m’

In the literature this name is usually reserved for a subset of the maximally
extended Schwarzschild spacetime, the shaded region in Fig. 7.2.2.
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Proof. We can restrict to the base manifold B,,I,w. For any null vector

field N which is, !, yic’,r,,s of synr).nnetry the equations

(I - 2rn/r) (N’)2+ (I - 2m/r)
- 1 (Nr) 2

= 0 holds, whence we have Nt

(1 - 2m/r)
-’Nr. Double null coordinates can now be obtained through

r
an integration of these two vector fields. Since fo (1 - 2m/r)--ldr

r
r + 2mIn (2. - 1) we define our coordinates by

=t+ (r+2mln
r

- 1)) ,
t - (r + 2mln (

r
_ 1))(2m 2m

This gives ddk = (dt + (I - 2m/r)-ldr)(dt - (I - 2m/r)-ldr)
t2_(1_2m -2 2d dr and therefore 9B,,,,,,, = (1 - ddk

.
From Y

2(r + 2rn In( lm - - 1)) we obtain
2m

e(,k- ’)/(4m) -= er/(2m)
r r

e/(2m)
2m

f(r)(2m 2m r

which implies

1 -
2m

ddk 2me-r/(2m)e( (4m) d,9B,_j_ = ( r r

dk.

k/(4m) (4mWe set X = e-’
,
Y = -ekl ) and finally obtain

9B,,cllw -_

32M3e-’/(2m)
dXdY, f(r) = XY.

Furthermore, Ox and Oy are both future oriented (this has been the

reason for choosing the minus sign in the coordinate transformation for

Y). It remains to show that the inverse of f exists for all r > 0. But this

= _

r -"--

< 0.follows immediately from f(r) -ZM-2e
2- 1

The coordinates provided by Proposition 7.2.1 are called Kruskal-

Szekeres-coordinates and the corresponding spacetime is often called

Kruskal-Szekeres-spacetime. This spacetime is locally isometric to the

metric given in Theorem 7.2.1 but the global structure is different

from the global structure obtained by using Schwarschild coordinates

(cf. Fig. 7.2.2). Nevertheless, in this book we will refer to the inextensi-

ble spacetime given in Proposition 7.2.1 as Schwarzschild spacetime.

Remark 7.2. 1. The motivation for the Schwarzschild spacetime is to de-

scribe the exterior of a non-rotating star. During the lifetime of the star

the radius may change (typically, it may shrink and perhaps even reach

0). If we denote the r-component of the star at t by rstar(t) then we

will need for each t only the part r > rtar (t) of the shaded region in

Fig. 7.2.2. The white region can be completely discarded for physical

purposes.
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Fig. 7.2.2. Schwarzschild spacetime. Radial null geodesics are the

straight lines X = const and Y = const. The region covered by
Schwarzschild coordinates is shaded

We will now investigate this solution in more detail and get a first

glimpse at what is known as a black hole: In Proposition 7.2.3 below we

will show that this spacetime is singular but inextensible. But first we

need to calculate its geodesics.

Lemma 7.2.1. Let (M,g) be a pseudo-Riemannian manifold and (xi,

.... Xn) be coordinates such that gab is diagonal,

n

gabdxadXb = 1: gadxadxa.
a=1

Then the geodesics s ^1(s) of (M, g) are given by

d
0 7(s), a(s)) =

n

( b (S))
2

i-s (ga
2
1: 19agb 0 ’Y (S) (no summation over a).
b=1

Proof. We suspend the summation convention if the repeated index is a.

Then we have gab = gaja and obtain
b

V aa 7, aa aa
d

(ga a) _  b c C)b,
ds

d

 ,s (ga a)  c_ (a. ja ja)
2

-ga b+ 19agbe - 19bga
c
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d
 a) 1- b ca

d 1 2

T
- (ga a) - ( b) 49a9b

S
(ga agbc -=

jS 2s 2

Proposition 7.2-2. Let s  -->  (s) be a geodesic in Schwarzschild space-

time

(R2 X S2, 9B _I_ + f-2(XY) (d02 + sin2 (O)d 02))

with = 77 E f - 1, 0, 11 and assume that  y-(O)  fx : r (x) = 2rn

Then there exists a rotational isometry 0 such that 7 o  is given by

2m dt
2 dW 7r

r
E,

ds
L, 0

2

E2 = (dr )2 + (I _ 2m) (_,, + L2/r2),a-s r

where E,L are constants.

Proof. We will use the coordinates provided by Theorem 7.2.1. Since

the metric is diagonal we can apply Lemma 7.2.1 and obtain for the

(t, 0,  p)-components of  

d

((I _ 2m)
dt

) = 0,is’ -r js-

d
r2 sin

2
(0)

dW
0,a-s ( ds) =

d
r
2
dO

= r
2
sin(O) cos(O)

dW

ds ( is- ) ds

There is an rotational isometry 0: x such that 0 o 0 o %0) = ir/2
and dO(O.,y(O)) = 0. Then 0 o -y = ir/2 is the unique solution of the

last equation. The first two equations can immediately be integrated. To

derive the fourth equation in the assertion of the proposition it is more

convenient to use the conservation property ( , - ) = 71 than to use the

r-component of the geodesic equation in Lemma 7.2.1. In fact, it follows

directly from

2m) (dt )2 + 2m)-1 (dr )2 + r2 (d o
2

r ds r ds ds

after inserting the equations for dtlds and dWIds.

Lemma 7.2.2. Let (M, g) be a spacetime which is locally extensible.

Then there is a null geodesic in (M, g) which is incomplete and extensible.
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Proof. Let (M, g) be a local extension of (M, g), x E M \ M, and y E M.

Then there is a (not necessarily future or time oriented) broken null

geodesic from x to y. This broken geodesic y must intersect OM C in

a point z = 7(0). Without loss of generality we can assume that ’Y (t) M

for t < 0, Itl sufficiently small. Since z  M this geodesic is incomplete

and extensible. I

Proposition 7.2.3. Schwarzschild spacetime is inextensible and geodesi-

cally incomplete. A future directed null geodesic is incomplete if and only

if it enters the region f 1 - 2m/r < 01. It then approaches r = 0 and the

Kretschmann scalar given by RabedRabcd 48,tn2 /r6 diverges along this

curve.

Proof. Lemma 4.4.14 implies Rrero Rwrw Rrtrt
i- 1703 2m-r

-2’, Ropop = 2rmsin2(0) ,
Rotot

1
Rptwt (2m - r), and

 71 _-i_-_!1__(OJ  ’T

Rabcd == 0 for all other components which are not related to these com-

ponents by the general symmetries of the Riemann tensor. It follows

that RabcdRabcd = 48M2/,r6 and therefore that any curve -y(s) with

r o - (s) --+ 0 is inextensible. A curve -y = (7Bo,,_h,7’YS2) in B chw X S2

is extensible if and Only if ’YB.,,:I,w is extensible in B ,ch, and ’YS2 is exten-

sible in S2
. By Lemma 7.2.2 we only have to study null geodesics in order

to prove that (M, g) is inextensible. If ’YB.,,h, is extensible then dr/ds
is bounded by Proposition 7.2.2 and r 74 0. By Corollary 4.4.1 ’YS2 is a

pregeodesic with bounded acceleration in a compact manifold and there-

fore also extensible. Hence we can restrict to (Bschw 7 gB_11w) and study

null geodesics in this 2-dimensional spacetime. In Kruskal coordinates

(X, Y) these geodesics are given by X = const or Y = const. Because of

the reflection isometries (X, Y) 1-4 (Y, X) and (X, Y)  --+ (-X, -Y) we

only need to consider future directed geodesics of the form X = const,

Y > 0. The region Y > 0 is the disjoint union of three different subsets,

(i) r/2m > 1, (ii) r/2m, = 1, (iii) r/2m < 1,

each of them being invariant under future directed null geodesics X

const, Y > 0.

We have to estimate the affine parameter of our null geodesics. If -Y

is a null geodesic given by X = const, Y > 0 then there is a function

Y  --4 h(Y) with  = h(Y)ay and ’7h(Y),9y(h(Y),9y) = h(Y)(h’(Y),9y +

h(Y)Vayi9y) == h(Y)(h’(Y) + h(Y)FyYy)ay. From Fyyy = 9y ln(gxy),

we obtain therefore h(Y) = c: (gxy)
- 1, where c is a constant.

In region (ii) gxy is constant which implies that -y satisfies 1-Y o
ds

-y(s) = h(Y) = const and is therefore future complete.

Now consider regions (i), (iii). Since

dr/ds = VE2 - L2/r2 (I - 2m/r) -+ JEJ > 0
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for r -- oo the parameter s diverges if and only if r diverges.
In case (i) we have (I - 2m/r) < 0 and the square root is well defined

for all s. The equation

dY/dr = h(y) dsldr
r

3e’/ (2m) (E2 - L2/r2 (1 - 2m/r))
-1/2

32m

implies that r diverges if Y diverges3. Hence s diverges for Y --> oo and

the geodesic -y must be future complete.
In case (iii) it is clear from XY f(r) (1 -  m-) er/(2m) that

2m r

our future directed null geodesics X = const, Y > 0 are approaching
r = 0 and are therefore inextensible and incomplete. I

The region r < 2m, X > 0 is the simplest model of a black hole. A

black hole is loosely characterised by the fact that a light ray which

enters it cannot leave it any more but instead reaches the edge of the

universe before the affine parameter of the corresponding null geodesic
has reached the value oo.

4 Since a black hole does not emit a single light
ray one is tempted to say that it is black, whence the name coined by
J. A. Wheeler. However, this name is slightly misleading, since the black

hole is not in the past of any observer who is situated outside this region.
Rather than appearing black it is simply invisible.

An observer who enters the region does not have a very low life ex-

pectancy. The longest timelike curve within the black hole region is given
by X = Y, X E [0, 1]. In Schwarzschild coordinates this corresponds to

the path t == 0, r E (0, 2m). Hence the observer’s life is bounded by

0 0
-

V"2-m/r- 1-1 dr = 7rm.As = f2
m

9B _ lw ((9r, ar) dr =f2m
7.2.1 Experimental tests for the Schwarzschild solution

In this section we will investigate the region 2m/r < I which may be

considered as the exterior of a non-rotating, spherically symmetric star

of mass m. The discussion applies in particular to the gravitational field

produced by the sun which was Schwarzschild’s motivation for solving
Einstein’s equation in this special case.

3This property could also have been seen geometrically: The lines X

const < 0, Y > 0 intersect all the hyperbolas r = const > 2m.
4 A widely accepted general definition of black holes does not exist. The

definition we have just given has the disadvantage that any Robertson-

Walker solution which satisfies the assumptions of Theorem 6.4.1 and e = I

is a giant black hole. In this special case one would have to replace the

condition that the null geodesics in the black hole don’t reach the affine

parameter oo by the condition that they don’t end in the cosmological
future singularity given by t = t+.
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Since the exterior region contains the timelike Killing field 09t orthog-

onal to the spheres of symmetry it admits a natural infinitesimal split

Ro9t E) (,9t)
1 of spacetime into space and time. Moreover, the distribution

(,Ot)’ is integrable whence we obtain geometrically defined hypersurfaces

of constant time. These hypersurfaces are given by

Zt,, = I (t, r, 0,  p) : t = to, r > 2m1.

Since at is a Killing vector field the pullback of the metric to Et does

not depend on t and we can identify all Et through projection along the

t coordinate. A timelike curve in spacetime corresponds to a curve in

the Riemannian manifold (Zo, (I - 2Tn/r) -’dr’ + r2(d02 + sin2(O)dW2))
which represents space.

In our case, we may imagine the non-rotating star to be the sun with

radius > 2m. It is located in the centre r = 0 of the coordinate

system but the Schwarzschild solution is of course only valid for r >

rsu,, > 2m.’ It follows that the region r < 2m can be excluded from

our discussion and we can utilise the spacetime split introduced above.

It is natural to identify this spacetime split with the infinitesimal splits

defined by our own world lines. "Space" has then its intuitive meaning.

While in general timelike geodesics represent freely falling particles, in

our case they should be interpreted as planets (or perhaps asteroids and

satellites) -

Because of Proposition 7.2.2 we can assume that the movement of a

single planet or light ray is contained in the plane 0 = 7r/2.

Lemma 7.2.3. Let -y(s) = (t(s), r(s), O(s), W(s)) be a geodesic. Then we

have

1 dr 2+ (-77 +
I 2m) =

E2

r2 dW) L2  2 r L2(
Proof. This follows by dividing the equations for dr/ds and d olds in

Proposition 7.2.2. 1

Corollary 7.2. 1. Let -y (s) = (t (s), r(s), 0(s), W (s)) be a geodesic. Then

p(s) = 11r(s) satisfies

d
+ g

-77m
+ 3me2.

dW2 L2

Proof. Substituting p(s) = 11r(s) in Lemma 7.2.3 gives (do/d(p)2 +

(-,qlL2+02)(1 - 2mg) = E2IL2. Differentiating this equation implies

the assertion. 1

5 Hence it does not matter that the Schwarzschild metric is not defined at

the centre r =: 0 where the sun is located.



324 7. Spherical symmetry

Bending of light rays. Since (null) geodesics are influenced by curva-

ture, according to general relativity, light rays should appear bent near

regions where gravity is large. In particular a light ray passing the sun

at a short distance should appear to be slightly bent. The experimental
verification of this effect was one of the first tests of the theory.

To describe this effect we need to determine the angle a under which

a central object appears to an observer in Schwarzschild spacetime. This

angle can then be compared with the corresponding angle determined

by the background metric dr2 + r2dS?2 of space (cf. Fig. 7.2.3)

ly

Fig. 7.2.3. The size of a central star in Schwarzschild spacetime

Lemma 7.2.4. Let -y be a lightlike geodesic and -y(O) = (to, ro, Oo, wo).
Then a = /(-Or,  (O)) satisfies ro sin(a) = (ILIIE) VF1 - 2m/r.

lyProof. Since  (s) == dtlds,9t +
"
the null condition - (I - 2m/r) Jdt1dsJ’ +

1-412 -1/2
ly = 0 implies V1 - 2m/rdt/ds (I - 2m/r) E. Since

aw I a, the angle a is given by sin(a) = ld ods,9,1111(s)j = IL/rl/((l -

2Tn/r) -1/2E). I

Corollary 7.2.2. Let 7 be a lightlike geodesic with past endpoint -Y(O) =

(to, ro, Oo, Wo). If -y) passes the boundary of a centred star of radius r,, >

3m, then the angle a,, defined in Fig. 7.2.3 satisfies

sin(a.) ==

r. I - 2m/ro

ro I - 2m/r*

Proof. Assume that -y passes the boundary of the star at s = s*. Then

(dr/ds) , = 0 since r has a minimum there. Proposition 7.2.2 implies

r*EIILI = V1 - 2m/r*
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and the assertion follows by inserting this equation into Lemma 7.2.4.

1

Observe that the angle a. of the star is larger than one would expect

in non-relativistic physics where sin(a,,) would just be given by r,,/ro.
This effect has been verified by a British team lead by Arthur Eddington

(1882-1944) which measured the bending of light rays close to the sun

during the total eclipse in 1919. They used the limiting behaviour given
below.

Proposition 7.2.4. Let IY be an inextensible null geodesic which does

not enter the region 2m/r > 1. Then there is a minimal radius ro =

minfr o -y(s) : s E RI along -y. Furthermore, there are two lines with

respect to the flat metric gflat = dr2 + r2dQ2 which are asymptotes of -y

and intersect at an angle A = 4m/ro + o( 77)
ro

Proof. The minimal value ro = r o -y(so) exists since -y is inextensible

and r o -y > 2m by assumption. We may choose our spherical coordinates

0,  o so that the light ray lies in the plane 0 = 7r/2 and the equation

(p oy(so) = 0 holds. Proposition 7.2.2 implies that for s -4 oo the coor-

dinate W converges to limits V. The lines (with respect to gflat) which

pas’s through the origin under these angles W are therefore parallel to

asymptotes of -y. The differential equation provided by Corollary 7.2.1

can be solved exactly and has the solution

(P (Q) =
9 1

d

_ 2 + 2 M0 3 + (ro)-2 - 2 mo(ro)-3

We are interested in situations where the ratio m/ro is small. Since the

angle A = 2 lime-o  o(p) vanishes when m, = 0 we will linearise W(g)
with respect to the parameter x = m/ro and then take the limit 0.

Differentiating the function m/ro F- W gives

aw
0  3 - ro

3

ro dp
C9(mo/ro) 11,ro (_ 2 + 2 MJ3 + (ro)-2 - 2 mo(ro)-3)3/2

and therefore

W
0  3 - ro-

3

-4 2
,9(mo/ro) -2

-  2+)3/2

19

),o=0,m0/r0=0 = ro JI/ro ((ro)

Hence we have zA = 4mo/ro + o(mo/ro). I
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The perihelion precession of Mercury. Mercury moves around the

*1 6sun describing an orbit whicli i.,., to an ellipse but not closed.

Already in the 19th century one has ineasured the angle between con-

secutive. local minima of the distance between Mercury and the sun and

has tried to explain this angle within the Newtonian theory of gravity.
7

While such a "precession" occurs if one takes into account the gravita-
tional fields caused by the other planets, this does not give a quantitative

explanation of the measured value. The first outstanding success of gen-

eral relativity was Einstein’s demonstration that his theory could explain
this discrepancy.8

In order to calculate the "missing angle" we have to compare the

Newtonian solution of the two-body problem (the sun, Mercury) with

timelike geodesics (Mercury) in the Schwarzschild solution which de-

scribes the sun.

In Newtonian gravitation, a particle in the gravitational field of a

spherically symmetric star moves according to the ordinary differential

equation

d21(8) M

2
- _ (S)- (7.2.10)

ds 111(s)II,

Lemma 7.2.5. Let m > 0 and  : R --> R3 be a solution of the differ-
ential equation (7.2.10). Then the curve y is contained in a plane and

Equation (7.2.10) is equivalent to

dW o 1(s) 2
d2ON 2

ds
- Le ,   

+ ON :--: m/L . (7.2.11)

where (1/9N, W) are polar coordinates of this plane and L is a constant.

Proof Equation (7.2. 10) implies that  (s) x (" x "

being the vector
ds

cross product in R3) is constant with respect to s. Hence I is contained

in the plane spanned by -!L (O) and  (O). If (r, W) are polar coordinates
ds

of this plane (x r cos W, x2 = r sin W), Equation (7.2. 10) is equivalent
to

d2,r(s)
2

M d2 0(s)
- r(s) r(s)-+2

dr(s)
= 0.

dP ( ds ) r2 (8) dS2 ds ds

The second equation implies that r
2 dV(s)

== L is constant. Setting ONds
2 (p2 21 /r, the first equation is therefore equivalent to d ON/d + ON = m/L

1

6This is actually true for all planets, but in the case of Mercury the effect is

especially pronounced.
7In order to do so, Astronomers have assumed the existence of a further

planet. However, this planet has never been seen.

8 He did this using the equation Ric = 87rT before he arrived at his final the-

ory with Ric - Scal/2 g = 87rT. This was possible since for these calculations

only the vacuum equation is needed.
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Equation (7.2.11) is an inhomogeneous linear differential equation with

constant coefficients. It is easy to see that (in the generic case L =  0)
there exist constants C1, C2 such that ON (W) = ’

+ cl sin(W) + C2 COS(W) -L2

Our polar coordinates are only fixed up to a rotation in the plane. Hence

we can assume without loss of generality that there is a constant e > 0

such that
M

ON ( O) = f2 (1 + e COS(W)).

This solution is periodic. We could now attempt solve the corresponding

equation in the Schwarzschild solution, and to calculate the difference of

angle W (modulo 27r) between two consecutive minima of the coordinate

radius as a Taylor polynomial inmo/ro. However, it is difficult to use this

strategy in practice because it would involve integrals which are quite

complicated.
We will therefore employ a different method and obtain approximate

solutions from approximate differential equations. Observe that Equa-
tion (7.2.11) is the Newtonian analogue to Corollary 7.2.1 and that both

equations differ only by the quadratic term mg
2
= m/r2 which is very

small. The idea is now to view the Newtonian solution as an approxima-
tion to the relativistic equation. Inserting the Newtonian solution into

the quadratic term gives a third equation

d2Oapprox M

+ 3Tn (
Tn

(1 + e COS(W))
2

dW2
+ Papprox = 1-2 -L-2

which is also a linear inhomogeneous differential equation with constant

coefficients. It appears to be a better approximation than the first differ-

ential equation since the term 0 has been replaced by the term Un(pN)2
which should be a better approximation for 3mg2. While this argument
is only heuristic a real justification appears to be too complicated to be

worthwhile in our context.

This third equation gives

’M 3Tn3 e2 e2
Papprox = 1-2 (1 + e COS(W)) +

L4 (I + 2 6
cos(2W) + eW sin(W)

To calculate the angle at the perihelion we have to calculate the minima

of the function g(W). The equation

d0approx Tne Un3

= -

y-2
sin(W) ! (! sin(2W) + sin(W) + W cos(W))dW

+
_L4 3

gives that Qappmx has a perihelion at Wo = 0 - as was to be expected.
A comparison with ON indicates that the next perihelion should be at

27r + 6 where J is small. Hence we can neglect f sin(2J) + sin(6)3

with respect to (27r + 6) cos(27r + 6) and obtain
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0
me

s,n(6) +
3M3e

(27r + 6) cos(6).
L2 L2

With tan(6) J and neglecting J with respect to 27r, this equation

implies

J
67rM2

L2

which gives a correction to the Newtonian value in very good agreement
with observation.

7.3 Quasi-linear hyperbolic systems of equations
in two independent variables

In this section we prove a theorem about hyperbolic systems of partial
differential equation in two independent variables which will be applied
in Sect. 7.4.

The material is very technical and of a different mathematical

topic than the rest of this book. The reader may wish to skip this

section on first reading.

For the following theorem we need some notation. If f : R1 -4 Rk we

call j’(f): R1 R1 x Rk, X _, (x, f (x)) the O-jet of f .
The canonical

projection R2 R, (t, q) i--> q is denoted by pr2-

Definition 7.3.1. Let h E C1(R2 x Rk,Rk) and let A (E C1(R2 X

Rk,Lin(Rk,Rk)). The system of differential equations

Otf + A o jo(f),Oqf = h o jo(f)

is a quasi-linear system of hyperbolic equations in two variables if for

every O-jet (t, q, F) E R2 x Rk the linear map A(t, q, F) has k linearly

independent left eigenvectors. The directions R(at + Ap9q) where Ai are

the left eigenvalues of A are called characteristic directions. The (un-
parameterised) integral curves of the characteristic directions9 are called

the characteristics of the system of differential equations (and the given

solution).

The aim of this section is to prove the following fundamental existence

and uniqueness theorem for quasi-linear systems of hyperbolic equations
in two variables.

Theorem 7.3. 1. Let h E C’(R2 x Rk, Rk) and let A E C’ (R2 X

Rk, Lin(Rk, Rk)) such that

atf + A o jo(f)aqf = h o jo(f)

Here we mean integral curves of vector fields which are tangent to the

characteristic directions
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is a quasi-linear system of hyperbolic equations in two variables. For

any function fo E COO ([a, bj, Rk) there is an open neighbourhood U of

101 x (a, b) C R2 and a unique smooth solution f : U --> Rk of the system

of differential equations such that f (0, q) = fo (q) for all q E (a, b).

The main part of the proof of Theorem 7.3.1 is contained in the following
lemma.

Lemma 7.3. 1. Let h, /\ E C’ (R2 x Rk, Rk) and a < b E R. Assume that

at any point, (t, q) E R2 at least two of the numbers A(t, q) are different.
For any function fo E C’ ([a, b], Rk) there is an open neighbourhood U

of 101 x (a, b) C R2 and a smooth map f : U -4 Rk such that

(i) f (0, q) fO(q) for all q G (a, b),
(ii) 9tfl + /V - jo(f))aqf’ = h’ o jo(f). (i kj).

Moreover, the solution is unique.

Proof. We will first transform the system of differential equations into a

system of integral equations and then employ an iteration technique in

order to solve the system of integral equations.

Assume that f is a solution to our system of partial differential equa-

tions. For (s, p) c R2 and i E f 1, kJ’we denote by t -yis’ (t) the
( P)

integral curve of the vector field at + A’ o jo (f) aq with -y ’  0) s, p)(S

From the definition of -Y(’,,P) and

d
fi i,

dt
0 -Y(s’p)(t)) = df(at + A’ o jo(f)aq) = atf’ + A’ o jo(f)aqf’

=hi0 jo(f)

we obtain the system of integral equations

h’ - jo (f) o -y’,,P) (T) d-r, (7.3.12)fi (S’ P) f’ (0 , ’Y’ ’) (0)) +fo
t

,Y(’S,P)(t)=(S,P)+(t,f A’-jO(f)o-y’,,,P)(T)d-r). (7.3.13)
S

Conversely, if there are continuous maps t) (i E 11’...’kj) which

satisfy this system of integral equations then _ILy also satisfy the system

of differential equations (ii) -
This follows since differentiation of Equation

(7.3.12) implies the differential equation (ii).
In order to solve the system of integral equations (7.3.12), (7.3.12)

we will employ an iteration procedure. Let

FO’(s,p)=fO’(p), r(,,,P),O(t)=(s+t,p),

and
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S

i jo(+F,’,,+I(s,p) = fo’ h o F,) o r ’,,P),,.,(-r)dT,
t

(t, A’ o jo(F .. )o
’

F(‘-,P),.+1(t) = (8,P) - I r(,,,P),,,, (r)d-r).

We will show that these sequences of functions have well defined limits.

These limiting functions will then solve our system of differential equa-

tions. We will prove the existence of unique limits by showing that the

sequences

M

Fm’ (8 1 A = Fo(S I A + E(Fj(s, p) - Fj’_ 1 (s, p)),
j=1

pr2 (T s,p),m(t)) = pr2(1 s,p),O (0)

+ (pr2 (’ ,,p)j (0) - pr2 (ri
i

 s,p)j- 1 (0)
j=1

can be majorised by an absolutely converging series which in turn implies
that they converge absolutely.

To achieve this it is important to obtain first bounds on Fj1 and

P),j
-For any d > a > 0 let

C, = sup jjjf0(q)jj + jjDfo(q)jj Jq E [a, b]j,

C2 =sup f jjh(jo(f)(t, q))jj + IIA(jo(f)(t, q))jj + IlDh(jo(f)(t, q))jj

+ JJDA(jo(f)(t, q))jj : sup jf (t, q)l < 2Cj,
i

(t,q) C- [-6z,d] x [a,b]j,
C C1 + C2)

and

(t, q) E (-a, a) x (a, b) I a +t < q < b - -t
C

a -
t
< q < b +

t

C C

We will solve the initial value problem in the region U&,,,, if a is chosen

small enough.’o Our bounds imply

pr2 (d r(’,,P),m (t)) A’ o jo (F, < C (7.3.14)
dt

- 1) F(",P),M- 1 M I
for r(i ,,P),,,(t) E U, Let (s,p) E U&,,,,. Inequality 7.3.14 and the defini-

tion of U&,, imply V(’,,P),m (t) C U&,,,. Hence during the iteration process

10 The choice of & is less significant. The only purpose of its introduction is

to guarantee the existence of the constant C2.
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we do not leave the region U&,,, and our bounds C1, C2 are valued at all

Let
(S

jF = SUPM Fm(s,p) : t E [-a- s,a- S],i E fl,...,kl  C’)P
I

 1

6’" = SUP

a
pr t G [-a - s, a - S], i E kjM f  ap 2 (F(,,p),,n (0)

Assume that supflFji(s, p) I : (s, p) E U&,O,, j E 10,..., mll < 2CI. From

a -

F,’,+ p) = -
"

(foi - -V(i"p),m (0))5p- OP

+ J"
’9

(h o jo(Fm) o F( ,,,p),m) (-r)dT
0 5p-

Of0i 9 8 a

ipr2(F(s,p),m(O)) + D2h pr2 (-V(,,p),mN)aq ap 5P

+ D3h D2Fm  7pr d-r
P

2(r s,p),m(T))

and

t

 7pr2(r s,p),?,n+1(0) 1 + D pr2 (F s,p),m (0)
P

2 /V
ap
a

+ D3A’D2Fm   -prP

we get

J +, CJmr + a(CJm" + CJmFJmr), jr+1 < I + a(CJr + CJQ").M - M M

Let a <
1

.
Then these inequalities imply jF+j < 3C, Jr+j = 2

1+2C M M

if jF < 3C and jr = 2. Since JOF < C and Jor I these bounds
M - rn

are valid for all m. We estimate for sup Fj(s, p) (s, p) E U&, 0,, j E

tO,...,mjj < 2C,

IF’,+,(s,p) - F,n(s,p)l

< IfOI(F(",P), (0)) - fo F S,P),rn-I(OMM

+ fs 1h ojo(F,) o F(,,,P),,n(7-) - h ojo(Fm-,) o r(,,P),m-j(T)jd-r

CIr(""P),M(O)) - F(""P),M-I(O))l

+ f sup f maxf 1 (Dh) (j’(Fm) o F(.,,P),m (t)) 11

Jj(Dh)(jO(Fm-j) - r(",,,P),m-j(t))jjj,
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i
t Ez- [O,s] I lljo(F,) 0F(S,p),,rn(T) -jo(Fm- I) oF(,,,P),,n-,(-r)lldT

< CIr(II,P)’III(O)) - r(Is,P),III-1(O))I

+ C (Ipr2 (F s,p),m (7)) - pr2 (7
0

k

+ E lFmj(s7p) o - F,’n-,(S,p) o 1’(,,p),m-ll)dT
j=j

rC  S,P),M(O)) F,1 (S,P),M-1(0))l

+ C (IPr2 (F 3,,p),. (T)) - pr2 (F S,p),Tn- (T)) I
n

k

+ E (IFmi ri
- Fjn (s, p) o r(,,,P), I(sip) 0  ,S,P),M M

j=1

+ I Fmj- 1 (s, p) o F( ,,P),,n - Fj,,- 1 (s, p) o F(,,P),,n- 1 1)) dT

< CIF(’. "P),M(O)) - F(,. "P),M-1(0))I
S

+Cf ((1+3kC)Ipr 3 7,)) - pr
3

T

0

2 (F(S,P),M 2(r .s,p),m-1( M

k

+ JFmj(sjp) o r(.,,P),m - Fmj-,(s,p) o -V(’,,P),ml)d-r,
j=1

where in the last inequality we have used

I Fmi- 1 (s, p) o-V( ,,P),m - Fmi- 1 (s, p) o

:5 sup JjD2Fmj-j(SiP)jj IF(s,p),M r(s,p),m-l
i

< 3CIF’ - S,P),--11.(S,P),M
-

Analogously we obtain the estimate

Iri(s,p),-+’ - (SIP)IMI
S

:5Cf ((1+3kC)Ipr2(F(3s,p),m(T))-pr2(r(3,5,p),m-1(7-))I
0

k

+ E I Fj,, (s, p) o F(,,P),m - Fmj- 1 (s, p) o d-T.

j=1

Let

F=
EM sup fiF;,,(s,p) - Fm-,(s,p)l I(s,p) E U&,o,, i E f k1j,
EM =:

i
- Pr2(r s,p),m-1(t))I J(s,p) E

r
sup  Jpr2 (T s,p),mW)

i

t E [-a - s, a - s], i E f 1, . . . , kj I -
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From our estimates we obtain

F CCF, er 6FEm+j < (I+a(1+3kC))CEI’+ak +1
< aC(1 +3kC),Er +aCkM M M - M M)

We will now show that these inequalities imply

(5
F <(2kC-,Fa)m andEr < (2kCVa-)’V"a-
M - M -

if a is chosen small enough and

supjjFj’(s,p)j : (8,P) E U&,,,,j E j0,...’mjj < 2C1

holds. In fact, we have EF< aC and El" < aC, so the inequalities hold
1 - 1 -

for m = I if a < 1/(2k)2 < 1. If they hold for 6F
,
Er we getM M

EF+1 < (1 + a(l + 3kC))C(2kCv"a-)mv’-a + akC(2kCvG-)’
rn-

(1 + a(l + 3kC) + kvla-) -1 (2kCVa-)m+l ,

2k

,r+, = aC(1 + 3kC)(2kCV,’a-)mv/a- + aCk(2kC.\/a)m
M

(a(I + 3kC) + kv/a-) -1(2kCv/a-)m+l
2k

Hence it is sufficient to choose a < minf 1/(2k)2, (2k- 1)2/(1+3kC+k)21.
Since JFm (s,p) - F, ,, < 6F-,(s,p)l and

Jpr2(F(s,p),,rn(t)) - pr2(F(s,p),m-1(t))1 <Em

the sequences

M

Fm’ (8 1 P) FO’(s, p) + E(Fj (s, p) - FjL 1 (s, p)),
j=1

M

i
pr2 (r(,,p),,n (0) pr2 (r(,,p),O (0) + E(pr2 (r(,,p),j W)

j=j

- pr2 (r( s,p)j - 1 (0)

converge if the series TOO ,E-7 and E’ I
J exist. These series are ma-

3= 3 j= 3

jorised by a convergent geometrical series if a < 1/(2kC)2. Moreover, it

is easy to check that

M

supf jFj(8,p)j : (8,p) E U&,,,,j E f0,..., mjj:5 C1 + EJ < 2CI

j=1

if

a <
(C1)2

4k2C2(1 + C1)2
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holds for every m. This proves uniform convergence of F,,,, F" if a

is chosen smaJI enough.
(8 P)’M

This solution is cleariy differentiable with respect to t and continuous

with respect to q. In order to show that it is C’ with respect to q and t we

can apply the same to argument to the prolonged system of differential

equations which is obtained by differentiation of (ii) as follows. For 1

(1 E 11, . . . ,
r - 11) differentiate equations (ii) 1 times with respect to t

and replace (,Yt) f E f1,-, 11) by g" and (at)lf by atg "-. This
t t

gives k(r - 1) equations of the form

atgi,l i’l
= 1’i(f’g1’1’...’gk,1t

+ Aiaqgt Gt t t

which we add to our system of differential equations. Differentiating

equations (ii) 1 times with respect to q we obtain equations of the form

at (aq)lf’ + A Oq(aq) 1 f’ = Gl,’(f, 0j, (aq)lf). We therefore also add
q

the kr equations

atgi,l i’l
.... gk,l)

q
+ Aiaqgq Gl,’(f, g

1, 1,
q q q

to our system of differential equations. Choosing the additional initial

conditions

(g"’)o(q) Aaqg"’-’ + G"’ (f, g"
I gk,l))t t t t t O,ql

(g" 1) o (q) = -X’(0, q, fo (q) 19q fO + h (0, q, fo (q)),t

(g’,’)o(q) = (0jfO(q)
q

we obtain a system of differential equations which is of the same form

as (i), (ii). By construction, the first components f’ of the solution of

this system coincide with the solution of our original system. Moreover,

g’,’ = (Ojf’, g"’ = (,9t)lf’ are continuous for all 1 which implies
q t

Cr (U&,, R).
We will now prove uniqueness of the solution. Assume that

I

i(f,  (’,,,Y)) both satisfy the system of integral equations (7.3.12), (7.3.13).
Then we get

S

(h’(-y’ ’s, Y)) (-r)) - h’( ’,,Y) (T), Y) (-F)))) d7-

0
o" Y) (7-), f,

(-Y(

< C f
8

(1,y’ ",’,y)(T) - +

0

and, analogously,
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< C f
8

+

o

Hence writing d(s, y) = 1-/".,,Y) -  ’(’s,Y) I + I f (-y ,’Y)) - j (  ,’Y)) I we obtain

S

maxfd(-r, y)j :5 maxj2C d(-r, y)d-rj
rEO,5 rEO,s 0

< maxj2Cs maxfd(-r, y)jjj = 2Cs maxfd(-r, y) If.
,rEO,s -rEO,s -rEO,s

This equation can only hold if d(s, y) = 0 for s < I/ (2C). I

Proof of Theorem 7.3. 1. Let f 11 (t, q, F), . . . ,
lk (t, q, F) I be a basis of left

eigenvectors of A(t, q, F) and denote their eigenvalues by A’ (t, q, F), . . . ,

Ak (t, q, F). Multiplying the differential equation from the left by l’ we

obtain Vatf + A’l’aqf = A or, equivalently,

at (1’f ) + A’aq (1’f (A) +
d

li f +
d

li Aif(dt ) (dq )
(lih) + (Dili + D31il9tf)f + Ai(D21i + D31iaqf)f

(A) + (Dlli)f + Ai(D21i)f + (D31ih)f.

This system of differential equations is of the diagonal form treated in

the Lemma 7.3.1 above. Hence the assertion follows directly from this

lemma. I

Corollary 7.3.1. In addition to the assumptions of Theorem 7.3.1 let

[a,,3] C [a, b] and to > 0. The solution f of the quasi-linear system of

hyperbolic equations at (to, qo) E R’ depends only on the initial data

restricted to [a,)3] if and only if all characteristics intersect f01 x R in

the subset 101 x [a, 0].

Proof This follows immediately from the integral representation (7.3.12),

(7.3.13).

The following corollary will only be used in Sect. 9.5.1.

Corollary 7.3.2. In addition to the assumptions of Theorem 7.3.1 as-

sume that A is constant and that the map h is linear in f.

The characteristic directions do not depend on the solution. More-

over, let  E) Qa, b]) be the set of all (t, q) Ei R x R such that all character-

istics through (t, q) intersect the set f01 x [a, b]. Then there is a unique

solution f which is defined on all of 0+ ([a, b])



336 7. Spherical symmetry

Proof. It is clear that the characteristics do not depend on the solution

since A does not depend on it. We denote the characteristic through (s, p)
to the ith eigenvalue A’ by -y(’,,P) ,The non-trivial part of the corollary is

to prove that the solution which (by Theorem 7.3.1 may only be defined

locally) extends to all of 0+ Qa, b]). This can be achieved by applying a

slightly refined version of Theorem 7.3.1 repeatedly. To this end we will

need better estimates in the proof of Theorem 7.3. L

Assume that the initial dat& satisfy I fo’(q) I < C1 for all q E [a, b].
Since h is linear with respect to f there are functions h, such that

h’(jo(f)(t,q)) = E1=1k hj’(t,q)f1(t,q). It follows that there is a constant

K G R such that

k

K > supf (Ihl’(t, q)l + JA’j + IlDh’l(t, q)JI) : (t, q)O([a, b])J.

Observe that K is well defined since 0 ([a, b]) is compact. Unlike in the

proof of Theorem 7.3.1 the inequality defining K is independent of the

solution. We set U,, = I (t, q) E 0 Qa, b]) < t < al.
Recall that r(,,P),,, -y(’,,,P) for all m. The estimate for I F,’,,+ 1 (s, p) -

F,’,,(8iP)j in the proof of Theorem 7.3.1 simplifies to

=0

F,’,,+I(s,p) - F,,,(s,p)l <

s k

+ (h’,F,’,, - h’Fl, o -y P) (,r) dT

F< akKEm7

where

FEm=supfjF 1,(S)P)-Fm1_j(S1P)j: (s,p)c2([a,b]),1cf1,.-.,k}j-

This estimate implies the recursive inequality EF
+1

< akKEF. ROM
M M

F EF akKCIE < akKC, we get m
:5 C1 (akK)" and therefore Em ,

J <I j= 3 - 1-akK’

Using Fm’ (8 1 A = Fo’(S) A + Ej’ _ 1 (F(s, p) - Fj’j (s, p)) we obtain the

bound
M

C,
JFm’(s,p)j < C, + EJ < -

j=1

3 -

I - akK

It follows that for a < 11(2kK) there is a solution defined in all of

U, Since the number 11(2kK) is independent of the solution we obtain

our global solution by successively solving 2kK maxfs : 3p with (s, p) E

2 ([a, b]) I initial value problems. The proof of uniqueness and differen-

tiability is exactly as in the proof of Theorem 7.3.1. 1
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Remark 7.3.1. Observe that Corollary 7.3.2 is still correct if we replace

the initial curve 101 x [a, b] by an arbitrary curve C which is intersected

by each characteristic at most once and replace  V Qa, b]) by set 0 (C) of

all (t, q) E R x R such that all characteristics through (t, q) intersect the

curve C.

7.4 The initial value problem
for spherically symmetric perfect fluid spacetimes

with non-interacting electromagnetic fields

In this section we discuss the initial value problem (cf. Equations

(7.1.3) -(7.1.6)) in some generality for a spherically symmetric space-

time which represents a perfect fluid.
Since the section is quite technical and requires the results of

Sect. 7.3 the reader may wish to skip it on first reading.

The Schwarzschild solution is a good description for the exterior of an

isolated, spherically symmetric, non-rotating star. Here we wish to solve

Einstein’s equation for the interior of such a star. The complete model of

an isolated, spherically symmetric, non-rotating star is then usually ob-

tained by matching the interior and the exterior solutions at the bound-

ary of the star. This will be done in Sect. 7.5 for the special case of static

stars.

The system of Equations (7.1.3)-(7.1.6) is highly non-linear and ra-

ther complicated. Observe that the assumption of a perfect fluid (Prad ’-,:

Psph) allows us to integrate Equations (7.1.7) and (7.1.8) directly sub-

stantially simplifies the problem. This simplification is unaffected when

we include a non-interacting electromagnetic field.

In the following we will first study electromagnetic fields in spheri-

cally symmetric spacetimes and then discuss the initial value problem

for a spherically symmetric spacetime which admits a perfect fluid and

a non-interacting electromagnetic field.

Readers who have not read Sect. 5.2.3 on Maxwell’s equation may

wish to skip the material up to Lemma 7.4.2 and assume Tj = 0,

e = b = 0 in the following discussion.

Recall from Sect. 5.2.3 that the source free Maxwell equations for an

electromagnetic field are given by

dF = 0,

div(F) = 0,

where F is a 2-form. The electromagnetic part of the energy momen-

tum tensor reads then (Te0ab ‘:‘

1 (gcdF Fbd (F, F) gab) -
Given a

41r ac 4
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spherically symmetric spacetime (M, g) and any 2-form F satisfying the

source-free Maxwell equations one could define T, natter == T - TI. Of

course, the matter represented by Tnatter would in general be quite ex-

otic. Moreover, it is possible that neither Tmatter nor Tel are spherically
symmetric. This discussion indicates that we should impose additional

conditions in order to describe physical electromagnetic fields. Given that

(M, g) is spherically symmetric, the most natural additional assumption
on the energy momentum tensor Tel would be to demand that it is invari-

ant under rotational isometries and that F is well defined in sufficiently
large open sets containing complete spheres of symmetry.

Lemma 7.4.1. Let (Z x S2,gZ +,r2df22) be a spherically symmetric,
4-dimensional Lorentz manifold, yZ be the volume form of (Z, gZ), and

ILS2 the volume form of (S2, dS?2). If F E f22(Z X S2) satisfies

dF = 0, div(F) = 0,

and (Te0ab =_.L (gcdFacFbd - " (F, F) gab) is spherically symmetric, then
47r 4

there exist constants e, b with

F = e(7rz)*pz + b(7rS2)*/IS2.
,r
2

The corresponding energy momentum ten8or is given by

Tel =
I

(
62 + b2

Ub 0 + Q Qb +e2 + b2r2df22
87r H H

Proof. We consider the orthonormal frame U, Q, E2, E3 1, where

E2 1ao and E 3 -
I

-aw.
r r sin(O)

Spherical symmetry of T,.l implies

T,l (E2, E2) = Tel (E3 i E3)

and

Tal(U, E2) = Tel(U, E3) = Tal(Q, E2) = TI(Q, E3) = Tal(E27 E3) 0.

All other components of Tl are unconstrained (cf. Lemma 7.1.1).
Since 47r(Tel)ab = gcdFacFbd - -1 (F, F) gab 7

we get4

0 = 41rT,,l (E2, E2) - 4,7rTel (E3, E3)

= -F(E2, U)2 + F(E21 Q)2 + F(E27 E3)2
- (-F(E3, U)2 + F(E3) Q)2 + F(E3, E2) 2)

= -F(E2, U)2 + F(E2, Q)2 + F(E31 U)2 - F(E3, Q)2
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and

0 = 47rTq (E2, E3) F(E2  U)F(E3, U) + F(E2, Q)F(E3 i Q)

Multiplying the first equation with F(E3, U)2 and inserting the second

equation we obtain

0 = -F(E27 Q)2F(E3, Q)2 + F(E2, Q)2F(E3, U)2

+ (F(E3, U)2 - F(E3, Q)2)F(E3, U)2

(F(E3, U)2 - F(E31Q)2)(F(E3i U)2 + F(E2’ Q)2).

If F(E3, U)2 - F(E3, Q)
2  4 0 we have F(E3, U) = F(E2, Q) = 0. In-

serting this into Tel (E2, E2) - Tel (E3, E3) = 0 gives then -F(E2, U) 2
_

F(E3, Q)2 = 0 which in turn implies F(E2, U) = F(E3, Q) = 0. In par-

ticular, we have shown F(E3, U) = F(E3, Q) = 0 which contradicts the

assumption F(E3, U)2 - F(E3, Q)2 7 0.

If F(E3, U)2 - F(E31 Q)2 = 0 we get F(E3 i U) = qF(E3) Q) i
where

,q E f - 1, 11. In the first case the equation Tel (E2, E3) = 0 implies that

F(E2, U) = 77F(E2 i Q) or F(E3, U) = F(E3, Q) = 0. In the second case

we obtain the same conclusion from the equation 0 = 47rTel (E2, E2) -

47rTel (E3, E3).
The equations Tel (Q, E2) = Tel (Q, E3) = 0 imply now

0 = -F(Q, U) (77F(E2 7 Q)) + (-F(E3 i Q))F(E21 E3) 7

=,qF(U, Q)F(E21 Q) - F(E2, E3)F(E3, Q)

0 = -F(Q 7 U) (,qF (E3, Q)) + (-F(E2, Q))F(E3, E2)

= 77F(U, Q)F(E3, Q) + F(E2, E3)F(E2, Q)

This is a linear system of equations for F(E2, Q), F(E3, Q). Since the

determinant of the associated matrix is F(U, Q)2 + F(E21 E3)2 we have

either F(E2, Q) = F(E3, Q) = 0 or F(U, Q) = F(E21 E3) = 0-11 We

have therefore two possible cases. There are functions A, b: M -- R

such that either F = Ar(W +,qQ ) A dO + f3r sin(O) (0 +,qQ ) A d p or

F = AU5 A Qb + i3-r2 sin(O)dO A dW.
In the first case let x GZ X S2

.
Then

F(,,_,( ),,y)(-U + 77Q, -) = 2r(x)(A(7rz(x), y)dO + f3(ir-r(x), y) sin(O)d p)

defines a 1-form on the sphere of symmetry Sx := 17r_T(X)l X S2. Since

S2 does not admit any non-vanishing vector fields, this 1-form must

vanish at some point yo of S.,. This implies = 0 and there-

fore (Tel)(,,(x),yO) = 0. Since T,,l is spherically symmetric we obtain

The equations Tel (U, E2) = Tel (U, E3) = 0 do not give any more informa-

tion.
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(Tel)(,, (,),y)
= 0 for all (7rE (x), y) E S., By arbitrariness of x we finally

have Tel = 0.

In the second case the electromagnetic field is given by F= AU5A

Q5 + j-3r2 sin(O)dO A d o- Since d(O A Q ) = 0 and d(sin(O)dO A dW) = 0

we obtain

dF = aoAdO A 0 A Q + apAdW A 0 A Qb

+ at (r2 f3) sin Odt A dO A dW + ’9q (,r2 j3-) sin Odq A dO A dW.

It follows that dF -- 0 is satisfied if and only if A depends only on t and

q whereas r2f3 depends only on 0 and W. Since div(U) = U * A + 2U e In r,

div(Q) =- Q e v + 2Q * In r, and [U, Q] = (Q 1P v)U - (U e A)Q we get

div(FO) = div(-A(U o Q - Q (& U) +
B

00 0,9W - aw 0 ao)
r2 sin2(o)

= -dA(u)Q + dA(Q)u - A(div(U)Q - div(Q)U + [U, Q])

* d
3

(ao),9v - d
3

(aw) ao
2 ’ ( 2 ’ 

r sin(O) r sin(O)

*
2

B
(div(ao)a, - div(,9V)ao)

r sin(O)

= A(Q*InA+ Q * v+ 2Q olnr - Q e 1,,)U

+A( - U*InA - U*A - 2U*lnr + Ue A)Q

+ (.90
B b

C90( r2 sin(O)
+

sin(O)  2 Sin(O)
)av + "V ( r2 sin(0)

Hence the equation div(F) 0 is equivalent to

u * in(Ar2) = 0, Q * ln(Ar2) = 0, aWj3- = 0,
sin(O)

= 0. (7.4.15)

It follows that there are constants e, b E R with F =

-,T
0 A Q +

b sin(O)dO A d o. We calculate (F, F) = _

2e2
+

2b
2

and get
r r

47rT =
e2

(Ub (D Ub _ Qb (D Qb) +
b2

(d02 + sin2 Od(P2)
r4 r2

1

(-
2e2 2b2) (-Ub & Ub + Qb (9 Qb + r

2 (d02 + Sin2 -OdW2)
4 r4

+
r4

I (e2 + b2) (_Ub 0 Ub + Qb 0 Q )
r4 2 2

+
I e2

+ b2) r2 (d02 + sin2 OdW2).
74 ( 2 2
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1

Observe that assuming dF = A where A is some spherically independent

1-form would have lead to b = 0 since there is no non-vanishing vector

field tangent to S2.

Lemma 7.1.2- Let T =- 60 0 0 + Pra& 0 Q + Psphr2 (t, q) (d02 +
sin20 d 02) + T,,I. Then Einstein’s equations are equivalent to

U*Uor= -(Qor)
Q * Prad

2
Prad - Psph M

6 + Prad r E + Prad r2

A 62 + V
- 47rr (Prad - 817 27rr3

7 (7.4.16)

Q 9 Prad (U e r) (Q 9 r) Prad - Psph
U e Q r - (U 9 r)

E + Prad

2
r E + Prad

(7.4.17)

U e r

U +Prad)
Q 0 r

- 2(E + Psph)
r

(7.4.18)

Q * m 47rr2(Q 0 r)(6 +
A
+

e + b
(7.4.19)

87r 87rr4

where m )2 )2).2(1+(Uor -(Qor
As a consequence, of Einstein’s equation the equations of motion,

U9IE=-(IE+Prad)U*/\-2(E+Psph)
U r

Q*Prad=-(C+Prad)Qov-2(Prad-Psph)Q*r
r

hold.

Proof. The energy momentum tensor is given by

e2 + b2 e2 + b2W Q T +
87rr4

)0 0 0 + (Prad -
87rr4

e + b
r2(d02 + sin

2
0 d(P2) .+ (Psph + 8,7rr4

Writing

e2 + b2 e2+ b2 e2 + b2
C +

87rr4
I Prad = Prad

81rr4
Ps-ph = Psph + 87rr4

We can apply Lemma 7.1.2 with E,PradiPsph replaced by E,Prad7Psph-
Observe that the equations of motions (7.1.7), (7.1.8) are a consequence

of they system of differential equations (7.1.3)-(7.1.6). Equation (7.1.6)
is the only equation in the system (7.1.3)-(7.1.6) which involves the

function Psph- Since this equation as well as Equation (7.1.7) can be
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solved for Ps~ph i
we can replace Equation (7.1.6) by Equation (7.1.7) in our

system. Using Equa ion (7.1,S) 1,,, i- ovr a, cc of Equations)ijsequence

(7.1.3)-(7.1.5), (7.1.7)), the definition of m, and the commutator relation

[U, Q] = (Q 4, v)U - (U * A)Q imply

Qep- +2(p- -P-h)(Qor)/r Tn
U*Uor= -(Qor)

rad rad SP

 _2F+P-rad

- 41rr(Prad -
A

817

)2 p-
-(Q

Q 0 Prad
2
(Q 0 r rad

- PsPh Tn

F+P- r F+P- r2rad rad

- 47rr(Prad -
A

81T

U 9 Q 9 r = Q s U * r + (Q * v)(U a r) - (U 9 A)(Q s r)

Qep- +2(p- -P-h)(Q*r)/r
= -(Us r)

rad rad
___

sp

E+p-rad

-(U e r)9 9 Prad
2
(U r) (Q Prad - Psph

E+p- r  +P-rad rad

It follows from the calculation in the proof of Lemma 7.1.3 that we can

replace Equation (7.1.3) by Q 9 m = 47rr’(Q * r) L

Equations (7.4.16)-(7.4.19) follow now from

F + Prad = E + Prad 7

Q 0 Prad = Q 0 Prad - Q
e2 + b2)( 8,rr4

e2 2

= Q 9 Prad + 4
 +b

(Q r)
81rr5

e2 + V
Prad - Psph = Prad - Psph - 2

87rr4

e2 2

47rrp~ = 47rrPrad
 +b

rad
27rr3

Finally observe that as a consequence of these equations the Equations

(7.1.7) and (7.1.8) hold unchanged, even if e2 + V =A 0.

The system of differential Equations (7.4.16)-(7.4.19) is singular at r

0. It can be shown that in the case e = b = 0 this singularity is only a co-

ordinate singularity, provided, the initial data can be smoothly extended

to r < 0 as symmetric functions. A proof, however, would require the so-

lution of a mixed initial-value-boundary-value problem (cf. (Courant and

Hilbert 1962; MiRler zurn Hagen, Yodzis, and Seifert 1974)). If e2+b2 7 0

then there is physical singularity at r 0. This follows immediately from

the fact that the invariant function g (T, T) blows up as r -4 0. In the
2
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following theorem we will solve the initial value problem in a region
which does not contain the centre of symmetry r = 0.

The initial value problem is not yet "well posed". In order to trans-
form the system of differential equations into a quasi-linear hyperbolic
system of equations we write y = U 9 r and I’ = Q * r. Adding these two

equations two our system of equations we obtain

U e r y, (7.4.20)

Q 0 Prad
U 0 y

P Prad - Psph Tn
-2-

C + Prad
2

r E + Prad r

e2 2A
,
+b

- 47rr (Prad - ) +
87r 27rr3

(7.4.21)

Q 0 Prad
U 0 F -Y

-

Prad - Psph2yi (7.4.22)
E + Prad r IE + Prad

U 0 6 (E + Prad)
Q y

- 2 (E + Psph)
Y

(7.4.23)
r

and

Q r = (7.4.24)

Q*Tn = 47rr2j, (E +
A
+

,e2 + b2

(7.4.25)
8?r 81rr4

The first 4 equations constitute a quasi-linear hyperbolic system of equa-

tions for r, y, r, E. It will turn out below that last 2 equations will hold

everywhere if they hold initially. This leaves us with two undetermined

functions, Prad, and Psph- In order to arrive at a well posed system of

equations we could either augment the system with two more differential

equations which relate the pressures Prad 7 Psph to our remaining quanti-
ties or we could impose functional relationships. We will opt for the

latter possibility and assume Prad = PsPh since in this case we can solve

Equations (7.1.7) 7 (7.1.8) explicitly which greatly simplifies the problem.

Furthermore, we will assume a functional relationship Prad = P(C) which

describes the physical properties of our fluid. This equation is referred

to.as an equation of state.

Theorem 7.4.1. Let M = R x R+ \ 101 x S2, coordinised by functions
t, q, 0, W, A E R, and let p: R -* R be a given monotonically increasing
smooth function.

For any e, b E R and any smooth functions  : R+ --- R, e: R+ -+ R+

such that e(q) + p o  (q) > 0 for all q E R+ there is a neighbourhood U

of the hypersurface Ito I x R+ X S2 and a unique Lorentz metric g on U

such that

(i) g satisfies the spherically symmetric Einstein equation with cos-

mological constant A for a perfect fluid with equation of state p(0,
a source-free electromagnetic field with parameters e, b;
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Oi) Elt=t"

(iii) rlt=t,

Proof. It is sufficient to prove that for all ri > 0, r2 > r, there is a

neighbourhood Urir2 of ftol x (rj,r2) X S2 and a unique solution g

defined on Uri,r2 *

In a first step we will show that - up to reparameterisation A

h(q)A, v --+ H(q)v - the initial value problem has a unique solution

such that (r,,E) coincides with ( ,  ) at t = to. To this end we introduce

two new dependent variables F = Q * r and y = U * r and augment

the system of equations by the definition of y. This gives the system

of Equations (7.4.20)-(7.4.25). The additional initial values F and  for

F, y are calculated from the necessary initial, "constraint equations"

Ir
 3 2 2

r

(I +  2 _ P2) = 41r &2 df +
r
A -

le +b

2 0
6 2

0

P = Q- .

In the first step we will show that there is a unique solution to the initial

value problem (7-4.20)-(7.4.23). In the second step we will show that

this solution also satisfies Equations (7.4.24),(7.4.25).
Equations ordinary differential equations (7.1.7)), (7.1.8) are conse-

quences of Equations (7.4.20)-(7.4.23) and can be solved independently.
In order to simplify the formulas, we define the "baryon number density"

n by
de E + P(,E)
*Tn

=

n

and the asymptotic behaviour c(n)/n -4 1 (,E 0). It follows that
E dj

ln(n) which in turn impliesJo F+P(z)

U
U * In(n)

E + P(O

and

Q 9 In
n

Q
n E + PW n

n Q.E+,Q.,s (E+P(E)) ! n
dc dE

Q

E + P(E) n n2

QOE
1+

dp 1) Q -p(E)

E + P(E) dE E + P(E)

Since, Equations (7.1.7), (7.1.8) are equivalent to

U 9 In(n) =
U 0 E

= -U e A - U o In(r2),
E + P
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Q * ln (6 + P) -

Q P
-Q V,

n C + P

we get

h(q)r’n and e-v
C + P

H(t)n’

where h, H are constants of integration. The system of equations (7.4.20)-

(7.4.23) is equivalent to

0 0 0 0

0 0 0 FA Y’
r 0 0 0 yA F,

0 B 0 0 C/

Hny

M
+

e2 2
Hn +b

- rb2 4,rr(p
A

 -+P -rT -T"7ra- 7wr

0

-2Hn2
r

where et Ota, a’ := Oqa, and

A = hH
nr )2 dp

B=hH
(nr)2(E+P dE r

The matrix
0 0 0 0

0 o o rA

0 0 0 yA

 O B 0 0

has left eigenvalues ai and left eigenvectors 1i gi ven by

al/2 = O a3/4 == IV-ABr,’

lAr,
11 = (1, 0, 0, 0), 12 = (07 Yi -ri 0) 1 13/4 = (0) 1,0, V B

)

The left eigenvectors: I I 1
12

1
13

,
and 14 are linearly independent unless r =

0, E + p(,E) = 0 or  d2, = 0. Hence our system of differential equations
de

is hyperbolic and admits a unique, local solution in U,,,,, (cf. Theorem

7.3.1). By the uniqueness of the solution we can choose a collection of

such intervals (rl, r2) which cover all of R+ and patch the solutions with

respect to these intervals together. This gives a unique solution in a

neighbourhood of the entire hypersurface Itol x R+ X S2.

We will now show that this solution also satisfies Equations (7.4.24)
and (7.4.25) everywhere. We have chosen our initial data F, y so that

they hold at t - to. From
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Uo (.V-Qor) = UoF-Qoy- [U,Q] or

-

"

--I+ -U 2--L Q 0 V)Y
+ P C + P r

+ (U o A)(Q + (U o A)r - (U o A)-V

QoP U 0 E

-Y +Qou +r + U o A + 2 Y)(E+P (E+P
+ U 9 A(Q F) U o A(Q 9 r - r)

we obtain a linear differential equation for the function (r - Q 0 r). Since

F-Qor = 0 initially this equation therefore holds everywhere. The other

constraint equation (7.4.25) is slightly more complicated. Observe first

that Equations (7.1.7), (7.1.8) imply [U, Q] QP U +
U"

+ It) Q.
6+P ( e+p r

The proof of Lemma 7.1.3 shows that the equation U * m = 41rr2F(C +
,2 +b2
--g ?r=r2 ) is a consequence of Equations (7.4.20)-(7.4.23). We have

’r

(U 9 Q* 47r J C+
A

) f2 df -
I e’ + b

M)
0 87r 2 r

= U 9 47r E +
A

) r2r+ e2+ b2F Q0UoM
87r 22r

+
Q op

(U 41 M) -
U 0 C( + 2y) (Q 0 M)

C + P E+P r

A e2 2
 + b

= 8,7rry.P E +
T7r) r2

YI,

+ 47rr
2 (E+ +

+
(U 0 r))87r 87rr4

+ 47rr
2

(U *,E)r + 47rQ* r2Y (P
A e + b

87r 87rr4

Q 0P
-(41rr2Y (P

A e2 + b2))- - - +
Q YI

(Q M)
6+P  87r jrr4 F

2 5

A 2 2
e + b

= 87rryr e +
87r

-

r3
YF

4

+41rr
2 (E+

A
+

-e2 + b2) (-YQOP)87r 87rr4 E + P
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3 2

 4.7rr2 (,E + P)
Q Y-2(c + p)YF

r

2

22

 87rrFy p -

A e +b

87r 8,rr4

3

+47rr2 (Q , Y)
A-e,2+b2(P 87r ftH

5

4
11

2" e2+ b2
+4,7rr y(Q A +2yr

r3

4 3

e2 2
QOP

2Y (P A+
b Q-Y

E + P
(47rr 87r 87rr4

+
F

(Q Tn)

2

8,7rrry c: +
A
_ (E +P) +P -

87r 87r

3

+(Q - Y) 47rr
2E + P

F

3

+47rr2(Q y)
A-e2+ b2+Q *Tn(P 87r 87rr4 F

4

+47rr2Y(Q - A +A+  e+ b

87r 87rr4 E + P

4 5

+1 (P - A-e2+b2+
e2+b2

yr(-l - 1 +2)
E + P 87r 87rr4 0

QOY
-47rr

2 (6+ A+ -e2+ b2) + Q.,M).r ( 8 7r 87rr4

We get a linear differential equation for 47rr2r(C + A
+

e2+b2
Q ,M

87r 8.7rr4

and 4,7rr2r(C + A
+

e2 +b2
Q 9 m holds everywhere since it is initially

81r 87rr4

satisfied.
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Observe that the monotonicity condition on p is necessary to obtain

a hyperbolic system of differential equations. The function Vie can be

physically interpreted as the velocity of sound. This indicates that  -P
> 0

de

is physically well justified assumption.

Corollary 7.4.1. The characteristic directions of the Einstein equation

are

U, z=U+ PQ,   = U- PLFLdpc FLdPE
It follows that for  d2 > 1 information can travel faster than light.

Proof AB.F = h2H2(nr)4/(6+p)2 2 = e-2ve2A 2 implies 0tv1’A__BFaqde dE

ev U dp Q). The second assertion follows from Corollary 7.3.1. 1V dir:

Remark 7.4.1. The system of differential equations is especially simple
in the case of dust: p(E) = 0. Then it reduces to the following system of

ordinary differential equations.

U 0 r Y,

U
+ Y

2- F2 62 rA

2r
+

2r3
+

2

where F does not depend on t. The equation for the energy density 6

decouples and can be calculated from U o E 6
Q9*Y

- 2c Y.
r

7.5 Static perfect fluid stars

Most stars do not change very much over long time spans. It appears

therefore reasonable to assume that their interior can be described by

static, spherically symmetric solution to Einstein’s equation. Static solu-

tions should be an even better description once these stars have burned

all of their fuel. In this section we will show that the assumption of static-

ity has a striking consequence: there is an absolute upper bound for the

mass of a static, spherically symmetric star. Further, this bound is so

small that it is exceeded by a multitude of known stars, which indicates

that many of these stars will collapse into singularities once their fuel is

exhausted.

,

In this section we will model a non-rotating star by a spherically sym-

metric, static perfect fluid spacetime. Under the assumption of staticity,
Einstein’s equation for a perfect fluid reduces to the following ordinary
differential equation.
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Theorem 7.5.1. Let (M, g) be a spherically symmetric 4-dimensional

spacetime which is C’ and piecewise smooth, and assume that there exists

a timelike Killing vector field U such that the energy momentum tensor

is given by T = (,E +p)00U5 +p g, where E, p are given, smooth function.

If the solution has a well defined centre of symmetry r = 0 then p

satisfies the Tolman-Oppenheimer-Volkoff equation

dp
(p +

m(r) + 47rr3
A

(P 87r

dr r(r - 2m(r))

 2where m(r) = 4,7r ’or &.f’ + 911
Conversely, let c: R+ -+ R+, p: R+ --> R+ given continuous func-

tions such that

(i) (: and p can be extended to R- as smooth, even functions,

(ii) E and p vanish for r > ro,

(iii) E(r) + p(r) > 0 for r < ro,

(iv) E and p are smooth for r < ro,

(v) E and p satisfy the Tolman- Oppenheimer- Volkoff equation, where

m(r) = 41r jr (,,(,) +
A

)  2
0

 7r

Then there exists a unique 4-dimensional, spherically symmetric Lorentz-

ian C’ -manifold (M, g) which is piecewise smooth and satisfies

(a) Ric - -!Scalg = 8-x(E o r + p o r)U’ 0 U5 + (p o r) g,
2

(b) U is a timelike Killing vector field.

There is an mo > 0 such that for r > ro this spacetime is isometric to

a spherically symmetric vacuum spacetime with cosmological constant A

and mass mo + : 6-3’

Proof. Equations (7.1.8) and (7.1.5) imply

(Q - r)
Q-P m

+ 47rr(p -
A

E + P
( _2 81r

ISince by definition of m, Q * r == 1 - 2M, the validity of the Tolman-F_ F
Oppenheimer-Vo,lkoff equation follows from  d2 = !QR:2Qer’r r

For the converse we have to check that the Tolman-Oppenheimer-

Volkoff equation implies that there exist functions v(r), A(r) which sat-

isfy Equations (7.1.3)-(7.1.6).
Observe first that Equation (7.1.4) is trivially satisfied. Equation

(7.1.3) is equivalent to

10m
Q 9 r 1Q 0 (

r(I (Q 0 r)2
r ar r 2
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which implies m(r) = L(I - (Q sr)’) -P A(t) e-") + A(t), where2

A(t) is a constant of in-Itc-gratio
 1g. .1 n. Fro-in nz f -,,m p-,,9) et A(t) = 0 and

therefore

2A(r)
2m

e

r )_ (7.5.26)

The 4-dimensional solution should be smooth at r = 0. Since a ro-

tation by 7r is an isometry it is clear that the metric must be invariant

under the transformation r  --> -r. But this is equivalent to A and V

being even functions of r. We also need that A satisfies A(O) = 0 because

for any other value we would get a conical singularity. In fact, consider

a centred sphere with area A(r) and (geodesic) radius R(r). In the limit

r --> 0 we obtain

A(r) 47rr2 47r 2 4-Tr
lim = lim 3

= -e
-2A (0)

R-0 W2 (?-) r-O (Q &)2 3 2(Q 9,r)-2 jr=0 3

which reduces to the Euclidean relation in the tangent space at the centre

of symmetry if and only if A(O) == 0. 12

To see that our conditions are sufficient for the smooth extendibility
of g to r = 0 consider the coordinate transformation xi = r cos 0 cos

x
2
= r cos 0 sin 0, x3 =: r sin 0. Then the metric is of the form

2 t2
e2A - 1

3

i

3

)2g = e ’d +
3

i)2
 7- x xjdx’dxj + E(dx 

Ei=I (X i,j=l i=1

Observe first that there are smooth functions Fj,  in a neighbourhood of

(XI, X2, X3) = 0 with

3 3

F,(XI, X2, X3) == V( E(Xi)2),  (Xl’ x2,x3) E(Xi)2)

if and only if v and A are even functions. Assume now that A is even.

2A
_ I y3 T.Then the Taylor series of e is a series in the variable

_i=l (x
The equation A(O) = 0 implies therefore that the quotient

E3 I (Xi)2
e2A
 i=

I

(Xi) 2

well defined at (x1 ,x2,x3) = 0 and smooth.

12 If A(O) > 0 we would get the analogue of the tip of a 3-dimensional cone. This

can be visualised in the 2-dimensional case with the sphere being replaced
by a circle.
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We obtain A(O) = 0 from Equation (7.5.26) since m vanishes to third

order at r = 0. The function A is even because of (7.5.26) and the fact

that the integrand c + Tt of m is even.
81r

Equations (7.1.5) simplifies to

e 2A,9’ V _
M

- 47rr (P- ’) =0
r2 8,7r

which, using e
-2A

= 1 - 2m/r, is equivalent to

m + 47rr3 (p - A

r(r - 2m)
87r

We can therefore determine Q up to a constant of integration. Observe

that v is even since the function

3 A
m(r) + 47rr P 87r

r(r - 2m(r))

to be integrated is uneven. The Tolman-Oppenheimer-Volkov equation

implies now the equation of motion (7.1.8). Since this equation is inde-

pendent from Equations (7.1.3)-(7.1.5) but Equation (7.1.8) is a conse-

quence of Equations (7.1.3)-(7.1.6) we can derive Equation (7.1.6) from

the system of Equations (7.1.3)-(7.1.5), (7.1.8). Let

MO =

,

lim M(r) -

Ar03

r ro,r<ro 6

If we extend A beyond ro using e2A(r) = (1 _ 2mo
_ Ar2)-1 for r > ro

r 3

then A is continuous. It is C1 if and only if

’ Ar2
lim r -+ ro, r < r0Q 9 m(r) = -

2

Since Equations (7.1.3)-(7.1.6) are satisfied we can appeal to Lemma

7.1.3 and infer that A is C’ if and only if 47rr02(6_(ro) + -A-) =
A"02

87r 2

which is equivalent to E(ro) = 0. We choose the constant of integration

for v such that we have e2v(ro) 2")
-

ArO
2

and extend the function v
ro 3

such that e
2v(r)

= I _ 2mo _.Ar2 for r > ro It follows that 1/ is continuous.
r 3

The function v is C1 if and only if

lim 9r(e2v) =
2mo 2Aro

r-ro,r<ro T 0) 2 3

We calculate

lim ar(e2v) = 2(e2v(ro)) Jim 0rV
r-ro,r<ro r-ro,r<ro
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m(ro) + 47rro3 (p(ro) -
2(1 - 81r

ro ro(ro - 2m(ro))

22 (m(ro) + 4-7rro3(p(ro)
A

ro 87T

22 mo +
Ar03

+ 4,7rro3p(ro) -
Ar03

ro
( 6 2

Hence v is C’ if and only if p(ro) = 0.

Uniqueness follows from Theorem 7.4.1.

Observe that we have used all our freedom in order to construct a spheri-

cally symmetric C’ spacetime with exterior vacuum solution. In general,
it is impossible to achieve higher differentiability. Even if staticity is

not assumed, a smooth matching of the interior solution to the vacuum

spacetime would imply properties of the boundary which are so strong
that they could be used in order to calculate the collapse of the star

explicitly (Kriele 1995).
Independently of the pressure, there is an upper mass limit for spher-

ically symmetric stars.

Theorem 7.5.2. Let (M, g) be a spherically symmetric static, perfect
fluid spacetime with positive, radially decreasing energy density (e  ! 0,
dE < 0).Tr -

(i) Let r, > 0. Then the mass associated with the radius r, satisfies
the inequality m(r,) < 5r,/9. If, in addition, we assume that p -
A
> 0 then the more stringent inequality m(r,) :5 4r,/9 holds.

’97r -

(ii) Assume that there is an equation of state p: c i--4p(E) and let

e, > 0. Then there is an m, E R which only depends on the equation

of state for low ene7gy densities, p: [0, F-,] --+ R such that m(r) :5 m,

for all r E R+.

Proof. Equation (7-1.6) is equivalent to Q 9 Q * v + (Q 9 v)’ = -2m/r3 +
47r(c + p) which (together with Equation (7.1.8)) implies

Q e’Q 9 v e’ (-I 2m
+ 41r(E + p)

I
FQ

r r3 ) r2

(-3m 47r
+ A))e

r4
+

r 87r

where for the last equality we have used Equation (7.1.5). Since de/dr <
0 we have

m(r) = 47r E( ) +
A

 2&10
r

( 87r )
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> 47r c(r) +
A

 2& = 47r E(r) +
A

) r3/3.
8., for 87r

Hence Q e (.Ie’Q e v) < 0 and an integration yields
r

1ev(r) (Q * V) Ir
>e’(rr-) (Q * V) I

r

for r < r, From Q o v = ’9Q o r we obtain
ar

Oev rev(rc:)

w-
> - (Q 0 V),

r TA 0 r)

We re-express Q 9 r in terms of m using m(I_ (Q 0 r) 2) and integrate
2

the resulting equation. This gives

ev(r’) - e’(0) >ev(’-) (Q 0 Or, f
r,;

rM(1) dr. (7.5.27)
0 2m(r)0 V-1--L

r

In order to estimate this integral we show first that m(r)  ! m(rc’)
Tr

for all r E (0, r,). Comparing the derivative of both functions we obtain

that the function

f(r)
d (m(r) - 47rE(r)r2 - 3

T(r,)r2
jr- r,3 ) rc3

r2(4,7re(r) - 3m(r,)/rc3)

satisfies df (r)
= if(r) + 47rr2 dc(r) < if(r). Thus if there is an rl E

dr dr

<-
r

(0, r,) with f (r, 0 then f(r) 0 for all r E (ri, rc). Because of

2)3m(O) = 0 the existence of an r2 E (0, rc) with m(r2) < M(rc)

implies the existence of an rl E (0, r2) with f(ri) < 0. Since f (r) < 0

for all r G (ri, r,) we obtain m(r) < m(r,) (_r_) for all r (E (r2j rc) in
r.,

contradiction to m(rc) = m(rc) )3. Hence such an r2 cannot exist

which implies our estimate m(r) m(r,) for all r E (0, r,)

Inserting this estimate into Inequality (7.5.27) we obtain

e’(0) < ev(rc:) I _
(Q 0 V)r(:, for,rr) dr

rc 2m(r)VF,-- m-r-

< ev(r’) -

(Q 0 Or, r,3
I -  , -

LM-(r
r, 2m(r,) ( r
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and therefore (using Equation (7.1.5))

M(,
0 K)Fl-_E --(r.) M  r-c e

v (0)

r

 m(rc)
m(r,) + 47rrc P A) M:,Fr. 8-7r

rc
(l_F2)r

r,
(I - 1,_2) + 47rrC3 (P - rc),

2
C C

2 2
C

87r

(7.5.28)

where we have set Fc Arl The right hand side is a third

order polynomial in r,. The zeros of this polynomial are

2 (p67r(r2 1 + )2 P 7r.3( 7

It follows that the right hand side of Inequality (7.5.28) vanishes for

m(rc) c 0, 2rc (1 - 67r(rc)2 (P _ A) 1 1 + 67r(rc)2 (P_ A)) .

9 87r 87r

Since m(r,) is positive we obtain the mass-bound

M(rc) < 2r, (1 - 67r (r,)
2 (P

A

) + I + 6,7r(rc)2 P - A))9 8-7r 81r

2r, 2 - x2 +X
9 (

where x 1 + 67r (,rc) 2 (pA Since the function x 2 _ X2 + x hasV 87r

its minimum at x = 1/2 it follows that m(rc) : 5rc/9. If we impose in

addition the energy condition p -
A- > 0 then we get mc < 4r,/9. This
87r

proves the first assertion.

For the second assertion observe that m(rc) > 43ir(rc)3 (6(rc) + 87r

since c is radially decreasing. This inequality and the upper bound for

m(r,) restrict all possible values (r, m(rc)) to a compact subset C C R2

which depends only on E(rc),p(rc), and A. We can now solve Einstein’s

equations for r > rc using the known equation of state. Clearly, m(r)
depends continuously on the data r, rn(rc). This implies that mc

supfm(r) : (r, m(rc)) E C I is finite.

Theorem 7.5.2 gives an important indication for the existence of singu-
larities in our universe. In Sect. 7.2 we have seen that all non-trivial,
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maximally extended, non-flat spherically symmetric vacuum solutions

with non-constant r of Einstein’s equation fail to be static in a subset of

spacetime and contain a region where curvature diverges. We saw that

it is possible to enter this region but impossible to leave it. Moreover,

once having entered the region any observer will fall into the singularity

(where curvature is infinite) within the finite time span 7rm where m

is the Schwarzschild mass. The question arises whether this property of

the vacuum solution also occurs for real stars which have non-vanishing

energy momentum tensor. Since in Newtonian gravity we also have a

central singularity in the vacuum case which can be avoided if the mat-

ter of the star is not assumed to be concentrated in a single point, it is

tempting to argue that the property of the Schwarzschild solution is an

artifact of the vacuum equation.

Theorem 7.5.2 indicates that this is not the case. We have proved that

there is an upper limit for the concentration of matter in static, spheri-

cally symmetric perfect fluid stars, m/r < 5/9, if the energy density of

the star decreases outward and is positive. These physical assumptions

are very weak and seem to be satisfied for all known objects. Moreover,

we have seen that for any star which is governed by an equation of state

there is an absolute mass limit. What is more, this mass limit can be

estimated using only the equation of state for low energies. This means

that we get bounds even if we do not know the physical configuration of

extremely dense stellar cores.

It has been shown13 that there are stars which exceed the mass limits

given in this section. This indicates that these stars will collapse into

black holes once they have exhausted their nuclear fuel. In Chap. 9 we

will give a very general argument to the same extent which does not

rely on spherical symmetry. It should be noted however, that all these

arguments in favour of the existence of black holes have loop holes. In

this section, we heavily rely on spherical symmetry and the assumption
of a perfect fluid. Moreover, it is conceivable that there are non-singular
solutions which fail to be static. There are other loop holes in Chap. 9

which we will address then.

The argument uses input from physics which is beyond the scope of this

book, cf. (Hartle 1978)
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In this chapter we link the concept of causality to the conformal struc-

ture induced by the metric and present some elementary causal prop-

erties and their interpretation.
In Minkowski spacetime, causality is trivial since lightlike geodesics

are straight lines. Lemma 3.1.4 shows that the local causal structure

of arbitrary Lorentzian manifolds is the same as the causal structure

of Minkowski spacetime. All non-trivial aspects of causality are there-

fore global in character. In this chapter we will also discuss in detail

the possibility of "causality violation" due to the global geometry of
spacetime.

Chapter 8 requires Sect. 3.1 and develops rather specialised mathe-

matical techniques. It contains a number of technical results which are

needed in Chap. 9 where the existence of singularities in generic space-

times is proved. We will restrict to those results which are necessary to

prove and interpret these singularity theorems. For a more compre-

hensive mathematical treatment of causality see (Beem and Ehrlich

1981; Hawking and Ellis 1973; Penrose 1972). For more examples
which exhibit the subtleties of causality and singularity theorems see

(Senovilla 1998).

According to our experience no signal is faster than light (photons). As

we assume that photons move along null geodesics, the integrated light
cone Cx = expx (Jvx G TxM : g (vx, vx) = 0, vx future orientedl should

(at least locally) determine which events can in principle be influenced

from a given event x. It is therefore plausible to identify the conformal

structure Q of spacetime with the causal structure of the universe.

Postulate 8.0.1 (Causality and conformal structure coincide).
x E M can causally influence y E M if and only if y E J+(X). Material

objects can reach y from x if and only if y E 1+(x).

A proper justification of Postulate 8.0.1 would require a corresponding

theory of physical particles and fields. This is far beyond the scope of

this book. While Postulate 8.0.1 will not be important for our theorems,
it is crucial for their physical interpretation.

Remark 8. 0. 1. For arbitrary matter models, Einstein’s equation does not

respect the link between the light cone structure and causality. For in-

stance, a spherically symmetric fluid with equation of state c i- p(,E)

ute
M. Kriele: LNPm 59, pp. 357 - 382, 1999© Springer-Verlag Berlin Heidelberg 1999
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satisfying dp/dc > 1 has spacelike characteristics (cf. Corollary 7.4.1).
Consequently, the characteristics of the initial value problem associated

with Einstein’s equation is spacelike whence perturbations of the ini-

tial data propagate faster than light. For this reason one usually regards
these matter models as unphysical. In fact, to date all classical (i.e.,
non-quantum) matter models which describe real matter have causal

characteristics.

The local causal structure of any Lorentzian manifold is trivial, i.e. the

same as in Minkowski spacetime. This follows immediately from Lemma

3.1.4 which is fundamental to this chapter. The following technical corol-

lary will also be useful.

Corollary 8.0.1. Let (M,g) be a Lorentzian manifold and C a convex

neighbourhood of x E C. Let K C C compact and -y be a causal curve in

K. Then -y is extensible.

Proof. Let -/: [a, b) --* C be a future directed causal curve in K. The

curve -y can be future extended if liMt-b -y(t) exists. In order to see that

this limit exists, let {’Y(ti)bEN7 fY(Sj)IjEN be convergent sequences with

limi-oo tj = limj,,,, sj = b and x, y be their limit points. For any i

there is a j > i with y(tj) E J+(7(sj),C) and for any j there is an

i > j with -y(si) (2 J+ (-y(tj), C). Hence we obtain x G J+ (y, C) and

y G J+ (x, C). Hence by Lemma 3.1.4 (i) there are two future directed

causal vectors v, w with x = expy (v) and y = expx (w). Traversing the

geodesics t i--> expy(tv) backwards we see that at x there is also a causal

past directed vector u with expx (u) = y. Since the exponential map expx

is a diffeomorphsim of an open set C C TM to C we must have w = u.

But this is only possible if both vectors vanish.

8.1 Causality conditions

It is easy to mathematically construct a spacetime with closed timelike

curves. At first glance one is tempted to rule out such spacetimes since

it seems possible to perform experiments in them which lead to logical
contradictions. In this section we will investigate this issue in some

detail. We will also define a slightly stronger "causality condition"

which will Play an important r6le in subsequent sections.

In a general Lorentzian manifold, it is possible for closed timelike curves

to exist.

Definition 8. 1. 1. Let X G M
-
We say that causality (resp., chronology)

is violated at x if and only if there exists a closed, non-trivial causal

(resp., timelike) curve from x to x. The chronology violating set is given

by
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JX E M : X (=- 1+(X)l

and the causality violating set by

Ix E M : 3 a non-trivial causal curve -y from, x to xJ.

A Lorentzian manifold (M, g) is causal (resp. chronological) if the causal-

ity violating set (resp., chronology violating set) is empty. If (M, g) is

chronological (resp. causal), we sometimes say that the chronology con-

dition (resp. causality condition) holds.

The term ’causality violation’ is somewhat misleading: the possibility of

closed causal curves is not contradictory itself and there are no mathe-

matical arguments against causality violation.

The idea that there may be closed timelike curves in our universe is

not new: The concept of cyclic time was a widespread idea in ancient

Greek philosophy (Kanitscheider 1984, p. 45). These Greek philosophers
accepted our fundamental experience of local linearity of time but they
compactified the time line to a time circle. Its circumference was identi-

fied with the time of one revolution of the universe (according to their

model of planetary motion or just according to ’arbitrary’ laying down’).
The sheer length of this period is sufficient to explain why nobody of us

ever has reentered her/his own past.
We can easily obtain a spacetime whose causal structure is analogous

to the causal structure of this ancient Greek model. Just take a horizontal

strip of 2-dimensional Minkowski space and identify the upper and the

lower boundary (cf. Figure 8.1 .12) .
Another very instructive example is

closed timelike curvecurve

identify

Fig. 8.1.1. A strip of two-

dimensional Minkowski

space where future and

past boundaries are

identified.

the Lorentzian manifold

’
Plato, for instance, chose 10,000 years (Kanitscheider 1984, p. 55)

2 The arrows in this and other figure indicate how both sides to be identified

are oriented
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(R x S1, 2dwdt + tdW2)

first given in (Misner 1967) (cf. Fig. 8.1.2). The chronology violating set

is given by f (t, W) : t < 01.

closed timelike curve

Fig. 8.1.2. Misner’s spacetime (S’ x R, 2dtdW + td(P2)

The "time compactification" arising in these examples is trivial in the

sense that in both examples there is a locally isometric Lorentzian man-

ifold which satisfies the chronology condition. In Lorentzian geometry

however, there also exist non-trivial examples where causality violation

arises geometrically and not merely topologically. An example which will

also be of importance in Chap. 9 is the G,5del solution (G6del 1949).

Example 8. 1. 1. The G6del solution describes a solutions of Einstein’s

equation with dust and postive cosmological constant, Ric - Ig + Ag
2

8,7reu 0 u where u is a timelike unit vector field and F_ =:= A/(4?r). The

metric is given by

g =
2

- dt2 + dr2 + (sinh2 (r) - sinh4(r))&P2
A

2 2
+ 2,v/2 sinh (r) d odt) + dz

where we have r > 0 and identify W with W + 21r. The vector field 9,
has closed integral curves and it is spacelike for r < arsinh(l). For r =

arsinh(l) the integral curves of a. are lightlike (but not null geodesics)
and for r > arsinh(l) they are timelike. Since sinh2(r) is an even function

of r it follows that at r = 0 we have only the usual coordinate singularity
associated with polar coordinates. Hence spacetime has the topology
R4 and is in particular simply connected. It follows that chronological

violation is an inherent property of the solution.
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A physically interesting solution of Einstein’s vacuum equation with van-

ishing cosmological constant is the Kerr solution. For details cf. (O’Neill
1995), (Wald 1984), (Hawking and Ellis 1973).

Despite the existence of these examples most physicists regard causal-

ity violation as ’unphysical’. The reason for this rejection of causality
violation is the following thought experiment:

Suppose, you are travelling in spacetime and reach a point in

your own past before your departure. Now you decide not to

travel after all and instead to stay home. Contradiction.

At a first glance, the possibility of "free will" seems to be at the centre of

the issue. However, following (Wheeler and Feynman 1949) Clarke (1977)
has re-formulated the thought experiment in terms of a simple machine

and has argued that the thought experiment is fallacious: Assume that

there is a gun directed at a target in spacetime. This target is connected

with a shutter which, if closed, blocks off the path between the gun

and the target: If the gun is triggered, the bullet will hit the target
which in turn will cause the shutter to fall. A second shot will now be

blocked by the shutter and therefore cannot hit the target (c.f. Fig. 8.1.3).
Now assume that the configuration is located in a region with causality
violation such that the shutter falls along a closed timelike curve so that

,gers shutter

Fig. 8.1.3. A gedanken experi-
ment to disprove causality viola-

tion

it blocks the bullet before the gun had been triggered. Again we seem

to arrive at a contradiction: If the shutter is open the bullet can hit the
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target. But the target closes the shutter which in turn blocks the path
of the bullet.

This paradox may be resolved as follows. The angle a, under which

the bullet is deflected by the shutter depends continuously on the shut-

ter’s position x at the time the bullet passes the shutter. For simplicity
we assume that the shutter will descend with constant velocity v. This

velocity is continuously related to the angle a. If the length of the closed

causal curve is T we obtain the relation x = Tv(a(x)). This equation
has at least one solution xo which leads to a contradiction-free situation.

In physical terms this can be explained as follows: The original contra-

diction is due to the fact that the shutter is thought to be either up or

down. However, the position of the shutter depends continuously on the

parameters of the system. What happens is that while the shutter de-

scends it grazes the bullet and thereby deflects it so that the mechanism

works only imperfectly. As a consequence, the shutter is released rather

late and not yet in place when the bullet hits it again due to causality
violation. Hence it grazes the bullet and we are in a paradox-free time

loop.
This scenario appears to be highly non-generic but Clarke argues

that exactly this is the effect of causality violation: It picks out those

non-generic data which are in accordance with the causal anomaly. The

gist of the argument rests on the assumption that physical processes are

continuous, an assumption which does not hold for quantum mechanical

systems. These systems may be in discrete pure states such as spin up or

spin down. However, if one tries to set up a quantum thought experiment

one is faced with the fact that all predictions are probabilistic which

invalidates the whole thought experiment from the outset.

There are also arguments against Clarke’s resolution of the paradox.
Instead of releasing the shutter directly when the target is hit we may

have a device which automatically releases the shutter a certain time

after the impact. This can be achieved with an electronic switch rather

than a mechanical connection between target and shutter. It seems now

much less probable that this device always releases the shutter such that

it grazes the bullet when coming down. For Clarke’s argument to work

the bullet must comes out of the gun so slowly that it just touches the

target but does not really hit it. Otherwise it cannot be explained that

the second device is not successful in releasing the shutter at the pre-set

time which would lead to a contradiction.

Whether Clarke’s argument is correct or not - we are only able to

conduct local experiments. But causality violation is a global effect, and

so the lack of experience cannot give evidence of its absence. Any objec-
tion against causality violation rests on an (unjustified) extrapolatiom
of every-day experience.
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There is another point which should be addressed. Causality vio-

lation seems to constrain free will. While this is not really a physical
problem, such an effect would have some bearing on philosophical and

moral questions. But an almost trivial observation resolves any possible
argument concerning free will at once: If we want to incorporate the no-

tion of free will into a physical description we have to view it at least as

a quantum effect (or caused by another yet undiscovered ’mechanism’),
but certainly not as something fitting into the framework of classical

physics. We only can expect that general relativity is a classical limit of

such a theory, It is therefore quite possible that ’free will’ is something
like a second order effect and that the classical "limit-spacetime" of our

world contains closed timelike curves even though we still enjoy free will.

With this discussion in mind we should always be very watchful if

in order to obtain physical results the seemingly innocent assumption of

chronology has to be made.

Lemma 8.1.1. The chronology (resp., causality) violating set consists

of connected components of the form I+ (xi) n I- (xi) (resp., J- (xi) n
J- (Xi)) 0 = 1, - - - ).

Proof. We only show the lemma for chronology violation. The proof for

causality violation is completely analogous. Let C be a connected com-

ponent of the chronology violating set and x E C. Since C is connected

there is for each pair of points Jx, yJ C C a (not necessarily causal) curve

-/ c C which connects x and y. Since for all z G C the set _T+ (z) is a

neighbourhood of z and the curve -y is compact, there are finitely many
zi e -y such that zi+1 E 1+(zi) and the neighborhoods 1+(zi) cover -Y. It

follows that there is a timelike curve from x to y. By the same argument
there is a timelike curve form y to x. Hence C c I+ (x) n I- (x) and the

assertion follows since 1+ (x) n I- (x) is connected.

The following proposition shows that a compact spacetime cannot be

chronological.

Proposition 8.1.1. If M is compact then the chronology violating set

of M is non-empty.

Proof. We can cover M with finitely many sets of the form 1+ (xi) (i
k). If x, is not contained in 1+(xi) there is an I E f2,..., kJ and

a permutation a with x, E 1+ (x,(1)), xi V Ui-=’, i+ (x,(i)). This implies

X,
I I1+(x,(i)) since otherwise we would haveUi=1

X, E I+ (XO,(1)) C I+ (U JT+ (XI(O) = U 1+(X,(i))
i=1 i=1

in contradiction to the definition of xi. If xi  1+ (xi) we can apply the

same argument to x1 instead of x1. Since there are only finitely many
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xi, one of the xi must be in its own future for otherwise we would have

that X.(k) is in none of the 1+(xi). I

Proposition 8.1.1 is often taken as a reason for dismissing compact space-

times as unphysical.
While the chronology condition and the causality condition are very

intuitive, from a technical point of view, a slightly stronger condition is

advantageous:

Definition 8.1.2. The strong causality condition holds at x E M iffor

any neighbourhood V of x there is a neighbourhood U C V of x such that

any causal curve intersects U at most once.

40Z

(remo,
remove

7-
7

rp.mnvp
iden ify

Fig. 8.1.4. A spacetime which

is causal but fails to be strongly
causal

In other words, if the strong causality condition does not hold at x, there

are timelike curves starting at x which come arbitrarily close to x after

leaving a giving convex neighbourhood. Hence the chronology condition

is almost violated. In the next section we will see the importance of this

causality condition.

Finally, we wish to introduce global hyperbolicity3, the strongest causality

condition which is often assumed. Its relevance stems from the fact that

in a globally hyperbolic spacetime the set of causal curves connecting

two given -points is compact in a natural topology. We will use related

properties in the next section.

Definition 8.1.3. A subset ofA C M is said to be globally hyperbolic if

A is strongly causal and for any two points x, y e A the set J+ (x) nJ- (y)
is compact.

This name has been coined by Leray (1953) in connection with systems of

partial differential equations.
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remove a ove
remove

remove
P

identify

Fig. 8.1.5. A spacetime which

is strongly causal. An infinitesi-

mally small perturbation of the

metric results in a spacetime with

chronology violation

8.2 Cluster and limit curves

In this section we study sequences of causal curves and there limits.

The results of this section will be fundamental to what follows. It is

based on (Beem and Ehrlich 1981).

It is practical to generalise the concept of a timelike or causal curve

to continuous curves.

Definition 8.2.1. A continuous curve -y is called causal (resp., time-

like) if every point x on -y has a convex neighbourhood C such that any

point y : x on 7 n C can be connected by a causal (resp., timelike) C’

curve which is contained in C.

Clearly, this definition coincides for Cl-curves with our previous Defini-

tion 3.1.3 (iii).

Lemma 8.2.1. Let x E M. There is a convex coordinate neighbourhood

of C of x, a constant k > 0, and coordinates (xO, . . ,
xn- 1) such that all

causal curves -y in C can be parameterised by t xO and the coordinate

inequality
n

E (,ya(t) - 7a(S))2 < kit sl
a=0

holds for all t, s.

Proof. We choose coordinates (xO,...’xn-1) in a convex neighbour-
hood C of x with compact closure such that dxO is timelike and all

dx’ (i E f 1, . . . ,
n - 11) are spacelike. Then any causal curve in C can

be parameterised by A Let M be a causal Cl-curve with y(t) = -y(t)
and p(s) = -y(s) (cf. Fig. 8.2.1). Since the closure of C is compact there

exists a constant ko > 0 such that all causal vectors are also causal with

respect to the flat metric -kodt2 + En-
I
(dx’ )2. In particular, p satisfies

i=1
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 nst

Fig. 8.2.1. The proof of Lemma

8.2.1

ko == ko (itO)2 En-I(Ai)2. If we denote the standard basis of Rn by

feo,..., en-11 and write 11va (va)2,ea 112 = VEa-=01 we obtain

t

a (t)ea - ,a (S) ea 11 2 =11,aMea -
a WeaJJ2 = 11 1 ita (-r) d-rea 11 2

< ft 114a (T)eajj2dr < V’_1-+ko(t - s).

Corollary 8.2.1. It follows that causal curves are Lipschitz and there-

fore differentiable almost everywhere.

For x, y c M let Co
causal (XI y) be the space of continuous causal curves

from x to y and Ct jme (XI y) be the space of timelike curves from x to y

which are C’. We will now specify a natural topology for the space of

causal curves.

Definition 8.2.2. Let - : [a, b] --+ M, -yi: [a, b] -4 M (i E N) be curves.

The sequence f7ijiEN converges to -y in the Co-topology if for every

neighbourhood V of - in M there exists an io E N such that -yj C V for
all i > io. The curve -y is called the limit curve of the sequence f-Yi jiErq -

Our terminology is slightly at odds with the traditional definition of

"limit curve" in general relativity but closer to generic mathematical ter-

minology. Often, not limits of curves (with respect to a natural topology)
but curves which are better thought of as a set of pointwise accumula-

tion points are called "limit curves". We will reserve the term "cluster

curve" for such accumulation curves:

Definition 8.2.3. Let -y: [a, b] -- M, -yi: [a, b] -4 M (i E N) be curves.

-y is said to be a cluster curve of the sequence 17ifiEN if there exists a
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Fig. 8.2.2. A limit curve -y

of a sequence of curves -yn

subsequence f-yij jj,2N such that for all x E -y each neighbourhood of x

intersects all but finitely many of the curves -yjJ. Following Beem and

Ehrlich (1981) we will say that the sequence f7ijbEN distinguishes the

cluster curve -y.

It will turn out that for strongly causal spacetimes cluster and limit

curves are essentially the same (cf. Theorem 8.2.2) below. There is no

Fig. 8.2.3. An example where a limit

curve from x to y is not a cluster curve

for a sequence of points from x to y

strict logical relation between limit curves and cluster curves. Consider in

the flat cylinder (S’ x R, d odt) (cf. Fig. 8.2.3) the sequence of identical

curves 7,, which connect x with y and satisfy W = const. The curve

-y which first traverses t = t(x) and then connects x with y satisfying

 a = const is a limit curve of -y, but it is not a cluster curve. In Fig. 8.2.4

we have a cluster curve -/ of a sequence of causal curves which is not

a limit curve. In general, a cluster curve of a sequence of causal curves

may even be spacelike (cf. Fig. 8.2.5

Proposition 8.2.1. If (M, g) is strongly causal and -y is a cluster curve

of a sequence f-yjjjEN of causal curves, then -y is causal.

Proof. Since (M, g) is strongly causal, we may cover -y by convex neigh-
bourhoods Ci such that no causal curve can enter any of these neigh-
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identify

Fig. 8.2.4. A spacetime,
which is causal but fails to

be strongly causal

identi

Fig. 8.2.5. Assume that

b1c is rational and a/b is ir

rational. Then the projec-
identify tion of the line with slope

. ...... c/a from R2 to the torus

depicted in the figure is a

a- Ar dense curve 7. Hence every
b curve is a cluster curve of

ly

bourhoods twice. Consider one such neighbourhood and denote it by C.

Let x, y be points in -y n C and denote by f7ij JjEN a subsequence which

distinguishes 7. Then there are sequences xj, yj E 7j., n C with xj --> x

and yj -+ y. Since yi., E J+ (xi, , C) Lemma 3.1.4 implies the existence of

a causal vector vj with expx,, (vj) = yi.,. These vectors have an accumu-

lation point v with exp,(v) y. The vector v must be causal since the

set of causal vectors is closed. But this implies y G J+ (x, C). If x and

y are arbitrary points on -y, we can find finitely many neighbourhoods
Ci such that the segment from x to y is covered by Uj Ci. We can now

apply the preceding argument finitely often to conclude that x and y are

causally related. I

The basic Lemma 8.2.4 below is an application of the theorem of Ascoli

which we will present first.

Let A C Rk be a compact set. The space of continuous functions

CO(A,Rl) = ff: A -- R
k

: f is continuousl
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can then be regarded as a normed vector space in a natural way. Just

set I I f I lo = SUP.,CA I I fW I I . Moreover, this norm is complete, i. e., ev-

ery Cauchy sequence Ifil c C’(A, R1) converges to a function f E

CO (A, R1) . (f can be constructed pointwise using the completeness of

R1.)

Lemma 8.2.2. Let B C C(A, R1) be a closed set and assume that for

every e > 0 there are finitely many balls B’’(xi),...,Bj,()(xj(,)) with

radius E and 13 C Uj(’) B’(xj). Then B is compact.i=1 6

Proof.
If the lemm’a is not true then there are open sets U, (t E I)

covering B such that no finite subset covers B. Let

JBI’(xi),...’ B3,(1)(xj(j))

be a finite set of balls of radius 1 which cover B. By our assumption

one of these balls cannot be covered by finitely many U,. (Otherwise we
would obtain a finite cover of B by finitely many sets which are in turn

finitely covered by sets V,). We denote this ball by B0. Assume that we

have constructed balls jBjjj=o,...’k-1 such that

(i) Any two consecutive balls intersect,

(ii) Each ball Bi has radius 2’,

(iii) None of these balls can be covered by finitely many U,.

k(2-k)
There are balls B1, (xi), . . . ,

B-k (Xk(2-k))which cover B and there
? 2

fore also Bk-1. Since Bk-1 cannot be covered by finitely many U, there

must exist at least one B2"! k (XII)which intersects Bk-1 and cannot be
2-

covered by finitely many U,. Denoting B2"lk(x,) by Bk we have induc-
2-

tively defined a sequence fBiliENUO of balls which satisfy (i)-(iii). Denote

the centres of these balls by yi. For any natural numbers m < n we obtain

n n

JYn - YmIl < Y_ IlYi - Yi-111 :5 Y_ (2-’ + 2- +’)) < 2 - 2-m

i=m+l i=m+l

Hence fYiIiENUO is a Cauchy sequence. Denoting its limit by y there is

an U, which contains y and a number r E N such that the ball B2- (Y)
is contained in U,,). But this implies B2-1-1 (Yr+l) C U, in contradiction

to (iii). I

Theorem 8.2.1 (Ascoli). Let A C R
k be a compact subset and fi: A -+

R1 (i E N) be an equi-continuous sequence of continuous functions such

that for all a E A the set UEN fi(a) is compact. Then there is a contin-

uous function f : A -4M and a subsequence ffii TiEN Of ffibEN which

converqes uniformly to f.
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Proof. We show first that the subset Ui"=o 1 f fi I is compact in the normed

space (CO (A, R’), I I - 11,,). By Lemma 8.2.2 we only have to show that for

any c > 0 there is a finite number of balls with diameter less than E which

cover U :Iffjj. Let c > 0 and a E A. Since ffiliEN is equi-continuous,
there is for each a c A a neighbourhood U,, of a such that for all fj
and all y E U,, the inequality 11fj(a) - fj(y)llo,, < c/4 holds. Since A is

compact, we can cover A with finitely many such neighbourhoods U"’,
(1 E kj). Since the union

k oo

K = U Uffi(al)l
1=1 i=1

is compact it can be covered by finitely many open balls of radius E/4.
Denote their centres by x, E K (s Cz f 1, . . . , rj). We will now construct

finitely many neighbourhoods of diameter less than c in CO (A, R’) which

cover all of U :Iffjj. These neighbourhood will be defined by the re-

quirement that the functions f in each such neighbourhood have values

x = f(a) close to x,, for all a near some aj. More precisely, consider the

finite set of all maps a: f 1, . . .
,
k f I.... rj and let

W

V,= hcCO(A,R1)nUjfjj:

11h(al) - x,(,) 11 < c/4 V1 E f kj

f E U Zjffjj. Since K is covered by finitely many balls xl,...,X,. of

radius IE4 there is for each 1 an x, such that I I j(aj) - x, I I < 6/4. Defining
6, (1) = si we see that j E V&. Hence the sets V, cover all of Uj’ I f fi 1.
Since the sets Ua

...... U,,, cover A there is for h, h E V, and a EE A an

I E f kj such that 11h(a) - h(al)II < e/4 and 11h(a) - h(al)II <,E/4.
This implies

11 h(a) - h(a) 11 < 11 h(a) - h(al) 11 + 11 h(a) - h(al) I

+ 11h(al) - x,(,) 11 + llx,(,) - h(al) I
< 4 - e/4 = c.

Hence each set V, is contained in a ball of radius c. This implies that

Uj’ 1 1 fi I is covered by finitely many balls of radius E and therefore com-

pact.

The assertion follows now since in a compact subset of a normed

space every sequence has a convergent subsequence. I
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Lemma 8.2.3. Let C be a convex coordinate neighbourhood with com-

pact closure and let f-yjjjErq be a sequence of causal curves in Z! which are

inextensible in U. If x E M is an accumulation point of this sequence,

then there is a causal cluster curve -y through x which is inextensible in

C.

Proof. By considering a subsequence we can assume without loss of gen-

erality that for each i there is a tj such that -yi(ti) --+ x. Any cluster

curve y of this sequence intersects x. We choose the same coordinates as

in Lemma 8.2.1 and view the curves -yj as continuous maps from finite

intervals [ai, bi] to R’. In order to apply the Theorem of Ascoli 8.2.1 we

trivially enlarge the domains [ai, bi] to [infiEN(ai), SUPiEN(bi)] by setting

-yj (t) = -yj (ai) for t E [a, aij and ^/i (t) =- -yj (bi) for t c: [bi, b]. This family of

maps is equi-continuous by Lemma 8.2.1. Since C has compact closure so

has the set UjEjq -yj (t) for all t. The theorem of Ascoli 8.2.1 implies that

a subsequence of these curves converges uniformly to a continuous curve

-y. To see that -y is causal let t, s E [a, b], s < t. Since -yi (t) E J+ (-Yi (s), C)
for all i, there is a causal geodesic pi from -yi(s) to -yi(t) for all i. By the

continuous dependence of the solutions of ordinary differential equations

with respect to initial values, there is a limit geodesic p starting at -y(s).
It is clearly causal and has future end point -y(t) by the convexity of C.

This implies -y (t) E J+ (-y (s), C) .
Since s and t were arbitrary, -Y must be

a causal curve. Since -y(a) is an accumulation point of -yj (a) E j \ C this

point must also lie in Z \ C. Analogously for -y(b). This implies that -Y is

inextensible in C. I

Lemma 8.2.4. Let biliEjq be a sequence of future inextensible causal

curves. If x E M is an accumulation point of this sequence, then there

is a causal, future inextensible cluster curve -y through x.

Proof. Let C,, be a convex neighbourhood as in Lemma 8.2.3. Then

there exists a subsequence which distinguishes a cluster curve which is

inextensible in C,,. We may now take the intersection x, of the future

boundary of C,, with this cluster curve. Applying the same argument

to a convex neighbourhood Cx, of xi and the subsequence, we obtain

an extension of the cluster curve to Cx U Cx, Now we can proceed by
induction. I

Proposition 8.2.2. Assume that (M,g) is globally hyperbolic and let

fXiLENi fYiJiErq be sequences of points converging to x, y E M such that

yj e J+ (xi), y E J+ (x). Let -yj be a causal curve from xi to yi. Then the

sequence bibErj has a cluster curve which connects x with y.

Proof. Let Jc’ E I- (x) and  E 1+ (y). The set J+ (. ) n J- ( ) is’ then a

neighbourhood of x, y and we can assume without loss of generality that
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all 7i lie in J+ (.: ) n J- ( ). Since J+ (.- ) n J- ( ) is compact, we can extend

all -yj such that they are inextensible in J+ (i ) n J- ( ). By compactness

and strong causality of J+ (.- ) n J- ( ) we can cover this set by finitely
many convex neighbourhoods as provided by Lemma 8.2.3 such that no

-yj intersects any neighbourhood twice. Now the claim is an immediate

consequence of Lemma 8.2.3. 1

Theorem 8.2.2. Let (M, g) be strongly causal. For given points X, y E

M let -yi: [a, b] -+ M be a sequence of causal geodesics with

.lim -yj (a) = x and Jim 7i(b) = y.

0Then -y: [a, b] -- M, 7 E Ccausal (X, Y) is a cluster curve of the sequence

f7ifiEN if and only if there is a subsequence OijljEN of f-yjjjErq which

converges to -y in the CO topology of curves.

Proof. Assume first that -y is a cluster curve Of OiIiEN- Since the image
of -y is compact, there are for each neighbourhood U of -X finitely many
convex sets jCkjk=1,...’j such that

(’) _/ C U1k=1 Ck C Ui

(ii) no causal curve can enter any Ck twice.

We have to show that there is a subsequence 1-yi., JjEN such that for suffi-

ciently large j all -yi., are contained in U. We can choose a finite sequence

of points jY(tk)jk=1,...’k with ’Y(tk) E Ck n Ck+l. By the definition of

a cluster sequence (and the fact that there are only finitely many such

points) there is a subsequence f7ij JjEN such that each -yi., intersects all

of the sets Ck n Ck+l. Since all Ck are convex and no causal curve can

re-enter any Ck, -Yi k.,
is contained in U1 =1 Ck C U-

Conversely, assume (without loss of generality) that j_YijiErq COn-

verges to -y in the Co topology of curves. Let h be a fixed Riemannian

metric h on M and let for r E N U1 be a neighbourhood of -y which is

the finite union of convex sets ICk,.’ }k=1,...’j,. such that no causal curve

can enter’any Ck .1 twice and all Ck,.i have diameter less than with

respect to h. We’ an extend the cauW l curves 7i to inextensible curves

in U1 =1 Ck,e. Now let fUi J,Erj be a sequence of neighbourhoods of 7k
1 

such thatnz, u., , = y. Since IYi IiEN converges to -y in the Co topology
of curves, we obtain a subsequence of curves Oi,JrEN with -yj, E Ui for

each r E N. Lemma 8.2.4 implies that this subsequence has a causal  lus-
ter curve A. Since A lies in the intersection of all Ui and this intersection

equals the set traversed by -y, we obtain A C -y. Thi other inclusion -Y c

follows since A is inextensible and -y does not have self-intersections. I

In view of Corollary 8.2.1 we can define the length L(-y) of a causal curve

-/ simply by setting
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L(-y) (t)) dt. (8.2.1)

0Since in any neighbourhood U of any causal curve -y C Ccausal(-70
there is a broken null geodesic from x to y, the length functional can-

not be lower semi-continuous with respect to the Co topology of curves.

If (M,g) is not chronological, then the length functional is not upper

semi-continuous either. To see this consider a timelike curve -Y which

has self intersections. Then in any neighbourhood of 7 there are time-

like C’ curves which contain a closed segment which can be repeatedly
traversed. In particular, we see that L = oc for all such curves while

7 has finite length. On the other hand, if (M, g) is causal, we have the

following proposition.

Proposition 8.2.3. Let x, y E M and assume that M is causal. The

length functional L is upper semi-continuous in Co y) with respectcausal (xl
to the CO topology of causal curves.

For the proof of Proposition 8.2.3 we will need the following result.

Lemma 8.2.5. Let (M, g) be causal and E Ctime (X, Y) with g

-1. Then there is a neighbourhood U of -y in M and an extension of the

curve parameter t of -y to a function t: U --> R such that dt is timelike

and grad(t),,y = - .

Proof. Let U be a neighbourhood of -y in M which is the union of a

finite number of convex sets with compact closure. Let  be a time-

like extension of -y which has no endpoint in U (cf. Corollary 8.0.1).
Since (M,g) is causal -y cannot have self intersections. Hence we can

choose U to be simply connected. Let jEo(t),...’En_j(t)j be an or-

thonormal frame along  with Eo =  . The map f : V C R’ ----> U,

(t’x1’...’xn-1) -, exp,:Y(t) (En-1 x’Ei(t) is a local diffeomorphismi=1

near -/ since exp is a local diffeomorphism near the origin. Hence we

can choose U and V so small that f is a diffeomorphism. This and

the fact that U is simply connected (otherwise t may be a cyclic co-

ordinate and only defined modulo an additive constant) implies that

we can extend the function t to all of U. Since dt is timelike at  , by

choosing U small enough, dt is timelike everywhere in U. Finally ob-

(Tn- 1
serve that dt(Ei) = dt(D’ = 0. Hence,jT expy(t) xiEi(t) dt(,9,,i)

grad(t) is orthogonal to Ej and therefore parallel to E0 =  0 From

I = dt( o) = g(grad(t),  ) we obtain grad(t),.y I

0
we need onlyProof of Proposition 8.2.3. Since Ccausal GT, Y) C Ctime (X, Y) 7

show that the length functional is upper semi-continuous in Ctime (X, Y)
Let -y: [a, b] --* M be a curve in Ct lme (x, y) and U be the neighbour-
hood given by Lemma 8.2.5. Let p be any timelike curve which con-

nects x and y and is contained in U. Since dt(A(t)) = 1 we obtain
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1
- (grad(t) +v (t)) where v (t) is orthogonal to grad(t).AW Fgrad(t),graj(W

This implies

-gi, (t) (A, A) g,(t) (grad(t), grad(t))(g(grad(t), grad(t)) )
1

) g1j,(t) (V(t), V(t))
g(grad(t), grad(t))

1

gl,(t) (grad(t), grad(t))
g (grad(t), grad(t))

g(grad(t), grad(t))’

On the other hand, we have I = -97(t) ( ,  ) = -gy(t) (grad(t), grad(t)).
Since x  -4 g.,(grad(t), grad(t)) is continuous we may choose for a given
c > 0 the set U so small that -I - E < g(grad(t), grad(t)) < -1 + E. This

implies -g,,(t)(A,A) :5 -j1.,g,(t)(,9t,,9t) and therefore L(p) <

L(-y). Since p E CtLie(, Y) was arbitrary the length function L is

upper semi-continuous on this set.

Remark 8.2. 1. Hawking and Ellis (1973) give a slightly different defini-

tion for the length of a causal curve. They first define the length of a

timelike curve E Ctlime (X, y) by Equation 8.2. 1. For a causal curve

they set

L(p) = inff (U) : U is a neighbourhood of yj,

where

t(U) = supfL (-y) : -y C U is timelike and C

It follows that this length functional L is also upper semi-continuous in

co x, y) with respect to the C’ topology of causal curves. Hence incausal(,
causal spacetimes, L and L coincide. However, if (M, g) is not chronolog-

ical, L does not coincide with the original (and more intuitive) definition

since for any timelike curve -y with self-intersection one has L(7) = oo.

8.3 Achronal submanifolds

and Cauchy developments

Given a set A the set 1+ (A) consists of those events which can be influ-

enced by A. It is clear that its boundary aI+ (A) is of special importance.

In this section we show that 91+(A) must be a Lipschitz manifold. We

will also investigate the "domain of dependence" of A, i.e., the set of

those events which are completely determined by the physical data of A.

For the following, definition, standard examples are spacelike sub-

manifolds and,91+(B) where B is any subset.
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Definition 8.3.1. A subset A C M is called achronal if there is no

timelike curve which intersects it twice. A set F is called a future set if
1+(F) C F. Past sets are defined analogously.

Lemma 8.3. 1. Let F be a future set. Then aF is an achronal Lipschitz
hypersurface.

Proof Let X E 9F. Since I+ (x) C F is open, 9F must be achronal. It also

follows that I- (x) C M\F. Consider a convex coordinate neighbourhood
U of x as given by Lemma 8.2.1. The integral curves [t(.,i ......"-1)

of axo
through (0, x1.... I Xn-1) are timelike. Since the integral curve of 9xo
through x intersects both I- (x, C) and 1+ (x, C) there is a neighbourhood
V C U of x such that all integral curves of axo which intersect

V intersect I- (x, C) and 1+ (x, C). It follows that each of these curves

I-t(xl,...,x--,) intersects U in a unique point y(x1,...’Xn-1). Since aF

is achronal, there is a constant k > 0 such that

n-1

ix0 0 Y(Xi Xn- 1) - X0 0 y ......
  n- 1) k (Xi - _, i) 2

for all (X1’...’ Xn-1), (&I ....... n-i). Hence the function

(X11 ... I Xn-1)  -4 Y(X1.... IXn-1)

is Lipschitz.

Definition 8.3.2. The null-boundary of a future set F is the set

,9nu11F = fx E c9F : 3 a neighbourhood U of x with 1+ (F\U) = 1+ (F)

The acausal boundary of F is a"F = aF \ anu"F.

This definition is justified by the following lemma.

Lemma 8.3.2. Let F be a future set and x E 0"11F. Then there is an

achronal null geodesic generator through x with future endpoint x. This

generator is Past inextensible or has past endpoint in aa’F.
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Proof. Let U be a neighbourhood of x such that 1+ (F) = 1+ (F \ U).
There is a sequence of points lXibErq C 1+(F) with xi --+ x. Let -yi be a

causal curve from some yi E 1+ (F) \ U to xi and let -y be a causal cluster

curve with future endpoint x. This curve cannot intersect 1+ (F) since

then we would have x E 1+ (F). It follows that -y lies in the achronal set

aF and is therefore an achronal null geodesic. If -y has a past endpoint
z E a""’ F, we can repeat the argument above to obtain a cluster curve y

which has future endpoint z and which is also an achronal null geodesic.
Since the concatenation of I-L and -y must be achronal, they are both part

of the same null geodesic. It follows that this null geodesic is either past

inextensible or has past endpoint in 9a’F. I

Definition 8.3.3. Let A be an achronal set. Then the edge of A, edge(A)
is the set of all points x E A such that for any neighbourhood U of x each

pair of points x : in 1:L (x, U) can be joined by a timelike curve which is

contained in U and does not intersect A.

Corollary 8.3. 1. Let A be a set. Then 9J+ (A) is an achronal Lipschitz

hypersurface. The set OJ+ (A) \ A is generated by null geodesics without

conjugate points. These generators are past inextensible or have past

endpoint in edge(A).

Proof. The first property is clear since J+ (A) is a future set. Let x

aJ+ (A)\q and -y be the maximally past extended null geodesic generator
with future endpoint x. Let y be the past endpoint of -y. Since 7 is a

generator of 9J+ (A)  f there is a neighbourhood )/V of -y \ Jyj which

does not intersect X

Assume that y E edge(A). Then there is a neighbourhood convex

U of y such that for every pair of points z:L in P: (y, U) every causal

curve A which connects z- and z+ intersects A. Let z- E I- (x, U),
zo E 1+ (z-, U) n 1- (4+, U) n -y n W, and A, a timelike curve from z-

to A There is a point z+ E I+ (y, U) n W and a timelike curve A2 C

W fromzO to z+. The concatenation A of A, and A2 intersects A since

y E q \ edge(A). By the construction of IN it is clear that /\2 cannot

intersect A. Hence there is a point Z E A2 n A. Consequently, we obtain

x E J+(ZO) c 1+(z) c 1+(A) in contradiction to x E 9J+(A). This

proves y  q \ edge(A).
Assume now that y is past endpoint of the null geodesic generator -Y

and is not contained in X Then y has a neighbourhood U which does

not intersect X This implies that for each z E 1+ (A) n U there is a

timelike curve from A to z which initially does not lie in U. Hence we

have shown I+ (A) = 1+ (1+ (A)) = 1+ (1+ (A) \ U), i.e., y E anullj+ (A).
This is impossible by Lemma 8.3.2. 1



8.3 Achronal submanifolds and Cauchy developments 377

Lemma 8.3.3. If A is a spacelike hypersurface, edge(A) is a subset of
the boundary of A.

Proof. Let x E A \ M. Since A is spacelike there exists a neighbourhood
U of x such that (I+ (x, U) u l- (x, U)) nA = 0. Since A is a hypersurface
it divides U (if chosen small enough) into two disconnected components,

one of them containing 1+ (x,.U) and the other I- (x, U). But this implies
that every causal curve from I- (x, U) to 1+ (U) must intersect A. I

Another important set is the future horismos of A c M. It consists of

those points which can be reached from A via causal but not via timelike

curves.

Definition 8.3.4. The future horismos of a subset A C M relative to

a neighbourhood U of A is the set E+ (A, U) = J+ (A, U) \ 1+ (A, U).

Lemma 8.3.4. Let A c M be a spacelike submanifold and x E M. Then

x E E+ (A, U) holds if and only if there is a null geodesic from A to x

which is completely contained in U and does not have focal points before
X.

Proof. This follows immediately from Corollary 8.3.1, Theorem 4.6.1,

Lemma 4.6.. 15, and the fact that E+ (A, U) is a subset of aJ+ (A, U). I

If A is a set we are also interested in those points which are completely
determined by the physical data at A. If Postulate 8.0.1 holds then this

set of these points is described by the following definition.

Definition 8.3.5. Let A be a set. Then the future Cauchy development
D+ (A) is the set of all points x E M such that all past inextensible causal

curves through x intersect A. The past Cauchy development is defined

analogously and denoted by D-(A). The union D(A) = D+ (A) U D-(A)
is called the Cauchy development of A.

Lemma 8.3.5. For any achronal set A we have I- (D+.(A)) n 1+ (A) c

D+ (A).

Proof. If x E I- (D+ (A)) n 1+ then there is a y E D+ (A) n 1+ (x).
Let -y be a timelike curve from x to y. If x 0 D+ (A) then there is a past
inextensible curve p with future endpoint x which does not intersect A.

Since the concatenation of M and -y is a past inextensible curve with future

endpoint y the curve -y intersects A at some point z. From z E 1+ (x) and

x E 1+ (A) we obtain z E 1+ (A) which implies that there is a timelike

curve with future endpoint y E 1+ (z) which intersects A twice. This

gives a contradiction to the achronality of A. I

The following theorem shows that global hyperbolicity (Definition 8.1.3)
and Cauchy developments are strongly linked.
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Theorem 8.3.1. Let A be an achronal set. Then int(D(A)) is globally
hyperbolic or empty.

First we need to establish the following two lemmas.

Lemma 8.3.6. Any past inextensible causal curve which passes through
x E int(D+ (A)) intersects I- (A).

Proof. Let -y be a past inextensible causal curve with future end point

xo = x. The set I+ (-y) n A is empty unless 7 intersects _T- (A). We choose

a Riemannian metric h on M and denote for z E M the neighbour-
hood fi G M : diSth (Z, Z _’) < Ej by B,(x). Let fxil C -y, xi+l E J-(xi)
be a sequence without past accumulation point and let yo ’E 1+(xo) n

int(D+ (A)). There is a point yj G I- (yo) n 1+ (xi, Bi (xi)). We induc-

tively define a sequence jyjjiC_N with yi E I- (yi-1) n 1+ (xi, B I (xi))
and connect the yi by timelike curve segments. The concatenation of

these curve segments is an inextensible timelike curve y C 1+(-y). Since

yo E int(D+(A)), the timelike curve y must intersect A at some point

y. There is an yj E p n I- (y) which implies xj E I- (y). This gives a

contradiction to 1+ (-y) n A = 0. 1

The spacetime depicted in Fig. 8.1.4 violates strong causality along an

achronal null geodesic. The following lemma shows that for chronological
spacetimes the set where strong causality is violated is always generated
by null geodesics.

Lemma 8.3.7. Assume that (M, g) is chronological. If it fails to be

strongly causal at x E M, then there is an achronal, inextensible null

geodesic y through x along which strong causality is violated.

The end piece of p to the past (resp. future) of x is a cluster curve

of curves which have intersected (resp. will intersect) arbitrarily small

neighbourhoods of x before (resp. afterwards)

Proof. Let Uj be a basis of convex neighbourhoods of x and fttiliEN be

a sequence of inextensible timelike curves such that pi intersects Uj at

least twice. Let xi, yi E Uj n pi, yj E J+ (xi) be points such that the

segment of pi between xi and yi leaves Uj. We denote by yi] (resp.
l,ti[xi -->]) the past (resp. future)inextensible endpiece of Mi with future

(resp. past) endpoint yi (resp. xi).
Let /-t+ [x ---+] be a future inextensible causal cluster curve of fyi [xi

I IiEN with past endpoint x and fMi., [xi., _-+1 IjEN be a a distinguishing
subsequence. If there is a point z E M+ [x --->1 n 1+ (x) then there are

neighbourhoods V, V, of x and z such that

V, c 1+ (. ) for all 1-7 E Vx and Vx C I- ( ) for all  E V,

Let jo E N be a number such that yi., E-z V., for all j > jo. By the

definition of a cluster curve there is a ii > jo with Mij, [xi.,, -+] n V, = _ 0.



8.3 Achronal submanifolds and Cauchy developments 379

Let  E Mi.,, [xi.,, n V,. We obtain a closed timelike curve by first

traversing Mi.,, [xi.,, from i to yi.,, and then connecting yi.,, E Vx with

V,, through a timelike curve. Since this contradicts the chronology
of (M, g) we have shown that M+ [x -+] n 1+ (x) = 0 and therefore that

the cluster curve /,t+ [x --*] is achronal.

Let p- 1---> X] be a future inextensible, causal cluster curve of

Yij I IjEN with future endpoint x. As for /,t+ [x -->] we see that x] is

achronal.

The concatenation y of y- [---> x] and /-t+ [x --4] if future and past
inextensible. If it is not achronal there exist points z- E /,t- [-- x] and

  + E /-t+ [x -->] with Z+ E I+ (z-) and therefore also neighbourhoods V,-

and Vz+ of z- and z+ such that all E calVz_ and all  + (E calVz+
are chronologically related. Let yiJjjEN be a subsequence of

fpi[--4 yi]jiEN which distinguishes x]. Hence there is a jo E N

such that pij--4 yij intersects Vz_ for all j > jo. Consider now the

subsequence JI.Li., [-- yiJ ] jj >j,, and recall that the curves Mi., [--4 yi., ] and

pi.,[xi., -- ] coincide. We can assume (without loss of generality) that

the sequence fpi.,[xi., -->]Ij>j(, distinguishes p+[x Hence there is a

ji > jo and a curve Mi,, [xi.,, -->] which intersects Vz+. Since P+ [x --4]
is a cluster curve with past endpoint x limxi., this neighbourhood
is intersected before pi.,, [xi.,, --4] = pij yij, ] intersects Vz- Again
we get a contradiction to the chronology of (M, g) -

This proves the first

assertion of the lemma.

The second assertion follows directly from our construction. I

Proof of Theorem 8.3. 1. We show first that int(D(A)) is strongly causal.

By the definition of Cauchy development there cannot be any closed

causal curve in int(D(A)). Assume that the strong causality condition

is violated at x E int(D(A)) and let U be an arbitrarily small convex

neighbourhood of x in int(D(A)). Then there exists a  sequence of future

directed timelike curves 7i which have x as an accumulation point and

intersect U twice. There is an inextensible cluster curve -Y through x.

This curve must intersect A since X E int(D(A)). By Lemma 8.3.6, -Y

intersects both I- (A) and 1+ (A). Since these sets are open they are

both intersected by yi for i large enough. From Lemma 8.3.7 we see

that yi first intersects 1+ (A) and then I- (A). Hence we can prolong
these curves such that they intersect A more than once. This gives a

contradiction to the achronality of A.

We show now that for any x, y E int(D(A)) the set J+ (x) n J- (y)
is compact. Since there are no closed causal curves in int(D(A)) the

equation x = y implies J+ (x) n J- (y) = jxj which is compact. Hence

we can assume that y E J+(x) \ fyj. We may also assume that y E

int(D+ (A)) since otherwise X E int(D
-

(A)) and we could apply the time

reversed argument. Let IZiLEN be a sequence in J+ (x) n J- (y). We need

to show that it contains a convergent subsequence. For each zi there is
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a causal curve -yj from x through zi to y. If a subsequence jzjj JjEN of

fZiliEN lies in D+(A) U A, we consider the cluster curve with future

end point y. Otherwise a subsequence fZi.,JjEN Of fZiLEN lies in D- (A)
and we can consider the cluster curve with past endpoint x. Again by
time-reversal, we can retrict to the first possibility. Since y E D+(A),
the cluster curve must intersect A. Hence the segment from A to y is

compact and has a compact neighbourhood U. Since this segment is a

cluster curve, infinitely many of the zi., lie in U and must therefore have

a convergent subsequence.

Lemma 8.3.8. Let A be a set. Then

D+(A)=jxeM: every past inextensible timelike curve

with future endpoint x intersects Al

Proof. "C":. Let x G D+ (A) \ A and -y be a past inextensible timelike

curve with future endpoint x. Let U be a convex neighbourhood of x

which does not intersect A and y c -y n U be a point different from

x. Then 1+ (y, U) is a neighbourhood of x and must therefore intersect

D+ (A). Let p be a timelike curve from y to some z c D+(A) n U which

is contained in U. Since it does not intersect A and the concatenation of

p and -y is past inextensible, y must intersect A.

"D:" let x  A be a point such that every past inextensible timelike

curve with future endpoint x intersects A. Now let 7 be a timelike curve

with future endpoint x and fXiliEN be a sequence in -( which converges

to x. Let Ai be a causal curve which is past inextensible and has fu-

ture endpoint xi. Since any causal curve which is not an achronal null

geodesic can be perturbed slightly such that the resulting curve is time-

like, the concatenation of Ai and the future end piece -y[xi -->] of -Y must

intersect A. Hence for i sufficiently large, Ai must intersect A. Since Ai

was arbitrary it follows that Xi E D+ (A) and, consequently, x E D+ (A).

Definition 8.3.6. Thejuture boundary of D+(A),

H+ (A) == D+ (A) \ I- (D+ (A))

is called the future Cauchy horizon. The past Cauchy horizon H- (A) is

defined analogously.

The future Cauchy horizon marks the limit of the set which can be

predicted from knowing data at A. It has the following fundamental

properties.

Lemma 8.3.9. Let x E H+(A) Then x c 1+ (A).
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Proof. There is a neighbourhood U of x which does not intersect A.

Since for any y E I- (x, U) the set 1+ (y, U) is a neighbourhood of x it

must intersect D+ (A). Let z c 1+ (y, U) n D+ (A). It follows that y E

D+ (A) c 1+ (A) since otherwise we could construct a past inextensible

curve through z which which does not intersect A.

Proposition 8.3.1. Let A be a closed achronal set. Its future horizon

H+ (A) is generated by achronal null geodesics which have either no past

endpoint or past endpoint in edge(A).

Proof. The set P = D+ (A) U I- (A) is a ast set since I- (D+ (A)) c

D+(A) U I- (A). Let y c H+(A) = D+ (A) \ I- (D+ (A)). If y E I- (A)
then there exists a timelike curve which intersects A twice in contradic-

tion to the achronality of A. Hence H+ (A) is a subset of the boundary

of P and therefore a subset of an achronal Lipschitz manifold.

Let x E H+ (A)\edge(A) and let Ixi JjErq be a sequence in 1+ (x) which

converges to x. By the definition of H+ (A) none of the xi is contained

in, D+ (A). Hence for each xi there is a past inextensible causal curve 7i

which does not intersect A. Let -y be a causal cluster curve with future

endpoint x. We will show that x has a convex neighbourhood C such

that - n C C H+ (A).
Since Lemma 8.3.9 implies that X E H+(A) c A U 1+ (A) there are

two possible cases, x E A \ edge(A) or x E 1+ (A). If x E A \ edge(A) we

choose C such that every timelike curve from 1- (x, C) to 1+ (x, C) which

is contained in C intersects A. If X E.T+ (A) we choose C c 1+ (A).
It follows that -y n C c 1+ (A) U A. This is clear if x E 1+ (A). Assume

therefore that x E A and that there is an y E 7 n C \ A. Since A is closed

there is a convex neighbourhood U C C of y which does not intersect A.

This neighbourhood intersect -yj (for i large enough). It also intersects

I- (x) since X E A and y’E J- (A). Hence there is a timelike curve A in

Fig. 8.3.2. The Cauchy horizon for a set which fails to be achronal
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U from I- (x) to 7i -
Since -yj does not intersect A we can concatenate A

with a the future endpiece of -yj to obtain a timelike curve from I- (x) to

xi E 1+ (x) which is contained in C and does not intersect A. This gives a

contradiction to X E A \ edge(A) and we have proved 7 n C c P- (A) U A.

Assume that there is an y E (1.,nC) \D+ (A). If the segment (- nC) [y --->

x] of -y n C between y and x would intersect A then we would obtain a

contradiction to the achronality of A from y E (1+ (A) U A) \ D+ (A) c

I+ (A) and (-y n C) [y ---> x] _t_LLy). Let U C C be a neighbourhood of

y which does not intersect D+ (A) and consider a point z E (I- (y, U) n

1+ (A)) \ D+ (A). Then the concatenation A of a timelike curve from z

to y in U and the segement (-y n C) [x -- y] does not intersect A. Since

x (=- H+ (A) and A is closed a slight deformation of A results in a causal

curve from z to some point in -: E D+ (A) which does not intersect A.

We could now prolong this curve to the past of z E M \ D+ (A) thereby
obtaining a past inextensible curve which does not intersect A. This gives
a contradiction to , E D+ (A), whence we have proved (-y n C) C D+ (A).

Assume that there is an y E (7 n C) n I- (D+ (A)) and let z e 1+ (y) n
D+ (A). Let A be a timelike curve from y to z. This curve cannot intersect

A to the future of y because of y E 1+ (A) U A and the achronality of A.

If y V A then there is a neighbourhood U of y with U C I- (z) which

does not intersect A. Since -y is a cluster curve Of jYijiEN there is an i

and a point  E -yj n U. It follows that there is a causal curve  from

 G -yj to z which does not intersect A. If y cz A then x E A \ edge(A)
by the construction of C. The point y has a convex neighbourhood of

U c C n I- (z) which is intersected by infinitely many -yi. Let i E N

with -/i n U :A 0,  E -yj n U, and  be a timelike curve from 9 to z.

Consider a timelike curve p from I- (x) n C to  which is contained in C.

The concatenation of 1-t and the part of -yj to the future of  intersects A

because of x V edge(A) and xi C- 1+ (x). The equation 7i n A = 0 implies
that M intersects A. Hence  cannot intersect A by the achronality of A.

We have shown that in either case, y V A and y G A, the concatenation of

the past endpiece of -yj with future endpoint  and  is past inextensible

and does not intersect A. This gives a contradiction to z E D+ (A).
Consequently, we have shown (-y n U) n I- (D+ (A)) 0

We have 7 n C C D+ (A) \ I- (D+ (A)) = H+ (A). The past endpoint
of 7 n C lies in H+(A) since H+(A) is closed. If   edge(A) we

can repeat the construction thereby obtaining a curve  n d C H+(A)
with future endpoint &. The concatenation of y n C and  n d gives a

curve -yj C H+(A) with future endpoint x. Repeating this construction

inductively we obtain a causal curve -yc,,, C H+ (A) with future endpoint
x which has either no past endpoint or has past endpoint in edge(A).
Since H+(A) is achronal this curve must be an achronal null geodesic.

I



9. Singularity theorems

In this chapter we prove and investigate "singularity theorems". These

theorems are usually interpreted as an indication that black holes exist

and that there has been a big bang - or at least that there are regions
in spacetime where general relativity breaks down. They are one of the

main motivations for attempting to quantise general relativity. While

there is a lot of evidence in favour of this interpretation we will see

that there are also open problems which have to be addressed in order

to justify this interpretation.

In Chaps. 7 and 6 we have seen that spacetimes describing a single,

non-rotating star and the simplest cosmological models of our universe

contain regions where the curvature diverges. One may think that these

singularities are only an artifact of our high symmetry assumptions, but

in this section, we will give an indication that a physically realistic space-

time must contain such singularities. More precisely, we will show that

there exist causal, inextensible geodesics which are incomplete. Recall

that a freely falling particle is represented by a timelike geodesic. If the

geodesic cannot be extended to a complete one (i.e. if its future end-

less continuation or its past endless continuation is of finite length),
then either the particle suddenly ceases to exist or the particle suddenly

springs into existence’. In either case this can only happen if spacetime
admits a "singularity" at the end (or beginning) of the history of the

particle. This singularity may be a curvature singularity, there may be a

topological obstruction, or spacetime may simply cease to be sufficiently
smooth. However, the Schwarzschild and Robertson Walker solutions in-

dicate that these singularities are accompanied with diverging curvature.

(But cf. Sect. 9.5.1 below where we present a spacetime which indicates

that such singularities are very mild). We will prove a singularity theo-

rem which only establishes the existence of incomplete causal geodesics
rather than incomplete timelike geodesics. While the innocent looking
extension to null geodesics is necessary for the proof, the name singu-

larity theorem is in this case somewhat misleading, because there exist

This should not be confused with pair creation or pair annihilation of parti-
cles and anti particles, because during these processes nothing really ceases

or starts to exist. These quantum mechanical phenomenons are merely
changes of state.

ute
M. Kriele: LNPm 59, pp. 383 - 424, 1999© Springer-Verlag Berlin Heidelberg 1999
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perfectly regular spacetimes with incomplete null geodesics contained in

compact subsets. On the other hand, it has been argued that such exam-

ples are very special and that in stable, physically realistic spacetimes
this phenomenon does not occur (cf. (Hawking and Ellis 1973)).

9.1 Energy conditions

In general, a maximally extended Lorentzian manifold need not contain

incomplete causal geodesics. In order to prove a singularity theorem, we

will have to make some physical assumptions.
There are two sorts of fundamental physical experience which come

to mind. Firstly, energy density as measured by the energy momentum

tensor is positive. Secondly, gravitation is attractive.

Recall that the energy density measured by an observer -y (with
g( , ) = -1) is given by E = T( , ). We feel that this energy den-

sity should be positive. Recall also that in the motivation of the energy

momentum tensor (cf. Sect. 5.1) we have obtained the energy density
E = T(U, U) as an average of a positive mass distribution. For our pur-

pose this should be enough of a motivation of the following definition

Definition 9.1.1. We say that the weak energy condition holds at x E

M if

T(u, u) > 0 for all causal vectors u E TXM.

For a physical verification of the weak energy condition one would have

to consider all realistic physical matter models. This is beyond the scope

of this book but so far the available evidence points to the fact that the

weak energy condition does hold.

Gravity is attractive if and only if any two nearby freely falling ob-

servers will be forced to approach each other under the influence of the

underlying spacetime geometry. This can be formulated infinitesimally
in a rigorous manner. A freely falling observer is modelled by a timelike

geodesic -y: [a, b] M. Let f : (-J, J) x [a, b] --> M a geodesic varia-

tion of -y and J f,(0, -) be the variation vector field. Observe that

J is a Jacobi vector field. From Taylor’s theorem we get with respect
to any coordinate system f’(s, t) = f

i (0, t) + 8ji (t) + 0(S2). This co-

ordinate expression can be interpreted in Newtonian terms as follows.

The observers 7 and f (s, -) have (up to first order) the same rest space

and are separated by the space vector sP. Hence up to first order it

makes sense to speak of the (Newtonian) force F with which -Y acts on

f (s, .). This force is approximately given by P = -msj’ where m is

the mass of the observer f (s, .). (The minus sign is inserted because the

force vector points from f (s, t) to -y (t) and J points into the opposite

direction). Clearly there cannot be a direct translation of Newtonian
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concepts to general relativity. But for small relative velocities (as in this

case, (ft (s, t))’ ;::z  ’(t) for s < 1) there is a well defined infinitesimal

limit. In fact, the location of an infinitesimally nearby observer is char-

acterised by the Jacobi vector field J orthogonal to -y and the force it is

acted on is given by F = -mV V J. Since J is a Jacobi vector field,

this is exactly the force in the following definition.

Definition 9.1.2. Let -y be a timelike geodesic with -1. A

neighbouring freely falling observer J of mass m is a pair (J, m), where

J is a Jacobi field along -y with values in  J- and m, is a positive number.

The tidal force which acts between the observer -y of mass m and its

neighbouring freely falling observer J is given by

F = mR(J,  ) -

The component of F pointing towards the observer -y can is given by

F, -
I J) -

-

M

(R(J,, I) , J). _0(_j1J)
-

VP_1J)

Hence the assertion that / attracts the infinitesimally neighbouring ob-

server corresponding to the Jacobi field J is equivalent to the assertion

that the sectional curvature of the plane spanned by J and  is non-

positive.2 This motivates the following definition.

Definition 9.1.3. We say that at x E M gravity is attractive in all

directions if and only the sectional curvature of all timelike planes in

TxM is non-positive.

The requirement that gravity is attractive in all directions is very strong.

Also note that apart from our experience in weak gravitational fields we

have not much evidence that gravity is really attractive in all directions.

On the other hand, it is clear that gravity must be attractive on average.

The reason is that gravity is much weaker than all the other fundamen-

tal physical interactions. Electromagnetism and gravitation are the only

long range interactions. On large scales, electromagnetism is not of pri-

mary importance because it is attractive or repulsive depending on the

configuration. If this would also be true for gravity, it would be of even

less importance for astrophysical applications. We know however that

this is not the case. There are of course several ways of defining averages

of gravitation. We will restrict attention to our single observer ’Y together
with the associated space of neighbouring, freely falling observers. The

average of the tidal forces in every direction is given by integrating the

2
Observer that we neglect the contribution of -y and the neighbouring ob-

server to the gravitational field. They are thought to be of negligible mass.
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tidal force component in every direction over the unit sphere S". For

n == 4 we obtain

3m

f ps2
41r S2 CT".M

3m /2 2-7r

(R(cos O(cos  pej + sin (pe2) + sin Oe3
47r

-ir/2 0

cos O(cos Wei + sin (Pe2) + sin Oe3 ) cos OdWdO

M
ir/2

21r( Cos2 W Cos20 (R(ei, el)
4/37r fr/2 fO

+ 2 cos  o sin W cos2o  R(ei,  ) , e-2 
+ 2 cos W cos 0 sin 0 (R (ei, 63) + sin

2
 O COS2 0 (R (e2 e-2)

+ 2 sin p cos 0 sinO (R(e2, e3)

+ sin2o (R (e3 i4 )  , e3) ) cos Od pdO

-

M

f
ir/2

(7r Cos3o (R(ei,  ) , ei) + 7r COS3 0 (R(e27  )‘7Y) e2)4/37r /2

+ 2-7r cos 0 sin2o (R (e-3 , e3) ) cos OdO

3

R (ei, ej = -Ric

This motivates the definition

Definition 9.1.4. The timelike convergence condition holds if

Ric(u, u) ’, : 0 for all causal vectors u.

Using Einstein’s equation this condition can be re-expressed in terms of

the energy momentum tensor:

T(u, u) -
1

, tr(T) -
A

g(u, u) > 0 for all causal vectors u.
n-2 ( 47r )

While this inequality is not implied by the weak energy condition (nor
does imply it), the timelike convergence condition is often also called the

strong energy condition. The following lemma gives a partial motivation

for this terminology.

Lemma 9.1.1. Assume that g and T can be simultaneously diagonalised
so that the energy density E and the principal pressures pi of T are de-

fined. Then the weak energy condition is equivalent to

E > 0, E + pi > 0 for all i C- n - 11,
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and the timelike convergence condition is equivalent to

n-1

Pi
-A > 0, E + pi  ! 0 for all i En- 11.(n - 3)r: +

41r

Proof. Let jeo,...’ en-11 be an orthonormal basis of TM which diago-

nalises T. Any causal vector u can be written as u - c(eo + En-1 e,),
n 1 2< 1. Hence the weak energy condi-where c, c’ numbers with Ei’--i (c’)

tion is equivalent to

n-1 n-1 n-1

0 < T(eo + T- Ciei, eo + I: Cie,) = 6 + E(Ci)2p,
i=1 i=1 i=1

n-1 n-1

= 1 -1: (Ci)2C +E(Ci)2 (6 + P,) .

The condition for the weak energy condition is sufficient since the factors

n-1

(Ci)2 and (Ci)2

are positive. It is necessary since we can choose the numbers ci = 0 or

for any given j the numbers 6’ = J *

The strong energy condition is equivalent to

n-1 n-1

0 < (n - 2)Ric(eo + Y Ciei, eo + 1: ciei)
i=1 i=1

n-1 n-1

e(n - 2)T( -0 + + Ciei)E cei, eo E

A
n-1 n-1

- (tr(T) 47r
g(eO + E c ei, eo + E cei)

n-1 n-1 n-1
A

6 +
i 2

1 + (Ci) 2(n - 2) E(C ) A ’5 +I:pj -

i=1
) (-

i=1
) (-

j=1
47r

n-1

(n - 2) (Ci) 2 (6 + P,)

+ (I_
n-1

i)2 +

n-1
A

(C (n - 3)c Epj - -) (
j=1

41r

Hence the assertion for the timelike convergence condition follows by the

same argument. I
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It seems physically more plausible to demand that the matter distri-

bution of our universe satisfies the inequality 6 > 0 rather than the

inequality c + En-
I

P,
A
> 0. In this sense the timelike convergence

condition is "physically" a stronger condition on the matter distribu-

tion than the weak energy condition. Since the cosmological constant

is close to zero and the energy density is much larger than the princi-
pal pressureS3 the timelike convergence condition is still a very plausible
assumption to make.

A further condition we want to impose is the genericity condition. It

states that along each causal geodesic -y there exists a point at which

 c d [,,Rbjcd[e f] =h 0

holds. This condition is only of technical nature, because the set of met-

rics which satisfy the strong energy condition is dense in the set of metrics

which satisfy both the strong energy and the genericity condition. Here

we impose the (very fine) C2-Whitney topology (for details and proofs
see (Lerner 1973)).

The mathematical significance of the strong energy condition in con-

junction with the genericity condition is clear from the following corollary
to Proposition 4.6.3.

Corollary 9.1.1. Assume that (M,g) is a Lorentzian manifold and let

-y: (a, b) -- M be an inextensible causal geodesic. If Ric( (t),  (t)) > 0

for all t and the genericity condition holds along -y then either

(i) -y is incomplete, or

(ii) -y contains a pair of conjugate points.

Proof We have to show that the genericity condition implies the existence

of a to such that the map

R: (-:y(to))-L --+ ( (to))-L
,

v 1-4 Rv := R(v,

is not identically zero.

If -y is timelike and  c(t) d M [a(t)Rbjcd[e f](O =h 0 then we have

in particular  c(t) d (t)Rbede -7’ 0. Since a symmetric bilinear form is

determined by its associated quadratic form there is a vector  c ( (t))-L
with g(R( ,  (t)) ,  (t)) =h 0. Consequently, R( ,  (t)) (t) 7 0.

Suppose that -y is null and that  c(t) d (0 [a(t)Rbjcd[e f](O =A 0. We

choose a basis of T,(t)M such that e, =  (to) and (ei i ek) =

6ik i (ei, e,) = 0, (e, e,) = 4, - 1 for i, k c f 1, . . . ,
n - 2 1, r, s E

n - 1, n - 2 1. In this and the associated dual basis we have :y’ = R, and

= -6n-1
a a

This implies

Recall that in physical units where the velocity of light c is not normalised

to 1 the numerical value of the energy density increases by a factor C2 in

comparison to the principal pressures.
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4 ’ (t) d (t) [,,(t)Rb]cd[e f](t) = 4J[,,-1Rb]nn[e6fn_1a I

= jn- 6n-I _ 6n- 6n-1
a

’Rbnne
f b ’Ranne

f

+ 6n- 6n-I _ jn- 6n- I

b

1
Rannf e a ’Rbnnf

e

If this expression does not vanish then either a or b must be equal to n- I

and so must be either e or f. For definiteness, assume that b f =- n - 1.

The formula then simplifies to

jn- ’R - R 6n-I _ 6n-’R jn- 1.
a (n-l)nne anne + Rann(n-1) e a (n-1)nn(n-1) e

This clearly vanishes if n E  a, el. The first two terms and the last two

terms cancel pairwise if a = n - 1. If e = n - 1 the second summand

cancels the third one and the first summand the fourth summand. Hence

 c(t) d M [a(t)Rb]cd[e f] W = 0 implies that a, e E f n - 21 and

Ranne : 0. But this implies in turn that R(-, ) : ( (t))’ --+ ( (t))J-
does not vanish.

9.2 Closed trapped surfaces

As a further preparation, consider an isolated, dense object, say a star,
in spacetime. If it produces enough gravitation, it will not only attract

material objects but even the light rays it sends out. (Recall that they
are modelled by null geodesics and therefore perceptible to the curva-

ture of spacetime). Exactly this situation happens in the Schwarzschild

spacetime. To be more concrete, let T be an (n - 2)-dimensional space-

like submanifold of M. We may think of T as the surface of the star

at a fixed time. We can now send out light orthogonal to this surface,
either in direction to the centre of the star or into the opposite direction.

Everyday experience suggests that the light congruence directed to the

centre should converge while the light congruence directed into the op-

posite direction should diverge. However, this does not take into account

the extrinsic curvature of the spacelike hypersurface which represents
the instant of time. There are many examples where both Songruences
converge, for instance the surfaces r == const < 2m, t = const in the

Schwarzschild solution. These surfaces are in the black hole region of the

Schwarzschild solution and the general interpretation is that the gravi-
tation of the black hole is so strong that it forces even initially outgoing
light rays to converge.

Since the normal bundle of T in M is a Lorentzian plane at each

point, there exist two future directed null vector fields N+, N_ along
T which are orthogonal to T and satisfy (N-, N+) = -1. They are

unique up to transformations of the form N i--+ a1N, where oz E

C" (T, R+ \ 101).
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Let x E T and jeAjA=2,...,,,_j be an orthonormal basis of Then

the requirement that both light concruences immediately start to con-

verge can be expressed by the inequalities

n-1 n-1

E g(VeAN+, eA) < 0, E g(VIAN-, 6A) < 0- (9.2.1)
A=2 A=2

This requirement can be formulated in a manifestly invariant way by
using the mean curvature vector field H of T (cf. Definition 4.4.2).

Definition 9.2.1. A closed (future) trapped (n-2)-surface (respectively
closed (future) strictly trapped (n- 2)-surface, closed (future) marginally
trapped (n - 2)-surface) is a closed (n - 2)-dimensional spacelike

submanifold T such that the mean curvature vector field H of T is past

pointing and causal (respectively timelike, null).

The mean curvature vector field is defined by H I:n-1
n-2 A=2 1(eA , eA)

Any vector v E T V = VA _N,,M can be decomposed as eA + V
-
+ v+N+,

where VA (V, eA) and v (v, N:F). Using this decomposition ,
we

obtain

H

n-1

e-Ai N-) N+ - (Ve
n 2

1: (_  VeA AeAi N+) N-)
A=2

(trT(X-)N+ + trr(X+)N-), (9.2.2)
n 2

where X VN are the null second fundamental forms. Like N, these

null second fundamental forms are uniquely defined up to transforma-

tions of the form X  --> a1X, where a E C’ (T, R+ \ f0j). The null

expansions are 0 =: gAB (X)AB’ It is clear that T is a strictly closed

trapped surface if and only if both null expansions are everywhere neg-

ative on T and therefore equivalent to Inequalities (9.2.1).

9.3 The singularity theorem of Hawking and Penrose

We are now ready to state the main result of this chapter,

Theorem 9.3. 1. A spacetime (M, g) is not causal geodesically complete

if

(i) the strong energy condition and the genericity condition hold,

(ii) The chronology conditions holds,

(iii) There exists at least one of the following:

(a) a strictly closed trapped surface,

(b) a compact achronal set without edge,
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(c) a point x such that along every past (or every future) inexten-

sible null geodesic from x the expansion of the null geodesics
starting at x becomes negative.

Strictly closed trapped surfaces are expected to surround very dense

stars. The paradigmatic example is the Schwarzschild solution. Further

evidence is provided by some theorems which prove the existence of

strictly closed trapped surfaces if the concentration of matter is high
(Schoen and Yau 1983; Bizo’n, Malec, and O’Murchadha 1988). Condition

(b) is satisfied for spatially closed universes such as the Robertson Walker

spacetimes with positive curvature. Condition (c) seems to be satisfied

for our point in the universe (assuming a spacetime which differs only
slightly from a Robertson Walker cosmology). This indicates that there

was a big bang or that there will be a big crunch. (For more details

cf. (Hawking and Ellis 1973, p. 358)).
Theorem 9.3.1 will follow as a corollary of the following proposition.

Proposition 9.3.1. The following three conditions cannot hold all to-

gether.

(i) every inextensible causal geodesic contains a pair of conjugate
points,

(ii) (M,g) is strongly causal

(iii) there is an achronal set A such that E+ (A) or E- (A) is com-

pact.

Proof that Theorem 9.3.1 follows from Proposition 9.3.1. Assume, that

(M, g) is causally geodesically complete and satisfies the chronology con-

dition. By Corollary 9. 1. 1, the strong energy condition and the genericity
condition imply that any inextensible causal geodesic has a pair of conju-
gate points. In particular, there do not exist maximal, inextensible causal

geodesics. It follows that (M, g) must be strongly causal, since otherwise

it would contain an inextensible achronal. null geodesic by Lemma 8.3.7.

If (M, g) contains a strictly closed trapped surface T, then E+ (T) C

aJ+(E) is generated by null geodesics. These null geodesics are orthog-
onal to T and the definition of a strictly closed trapped surface implies
that each of them has a focal point (cf. Proposition 4.6.2). Since T is

compact and E+(T) is generated by null geodesics without focal points
it follows that E+ (T) is also be compact. An analogous argument shows

that in case (c) the set E+(x) is compact.
If (M, g) contains a compact achronal. set A without edge, then

E+ (A) = A. This follows since E+ (A) = J+ (A) \ 1+ (A) and Corol-

lary 8.3.1 imply that through every point x G E+ (A) \ A there is a

generator of E+ (A) which intersects edge(A). Hence the set E+ (A) is

also compact.
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Properties (i) - (iii) of Proposition 9.3.1 would therefore have to hold

under the conditions of Theorem 9.3.1 and the additional assumption
that all causal geodesics are complete. I

The idea for the proof of Proposition 9.3.1 is simple but the proof itself is

quite involved. We will therefore first give an outline and then establish

a sequence of lemmas which will imply the proposition.

Suppose, (i), (ii), (iii) in Proposition 9.3.1 hold and assume without

loss of generality that E+(A) is compact. We will show that the hori-

zon H+(E+(A)) is non-compact or empty. Every non-vanishing vector

field U must have a future inextensible integral curve 7 in D+(E+(A)).
Otherwise we could map the compact set E+(A) along the integral
curve of U onto H+(E+ (A)) which in turn would have to be compact

(and non-empty), too. We apply a similar construction to the past of

E+ (A) n J- (7) and obtain an inextensible causal curve M which is wholly
contained in D(E+ (A)). This curve can then be used to construct an in-

extensible maximal causal geodesic in contradiction to (i).
In order to carry out this program we will prove the following facts.

1. H+ (E+ (A)) C H+ (,9J+ (A)),
2. The Cauchy horizon H+(E+ (A)) is non-compact or empty.

3. There is a future inextensible timelike curve 7 C D+ (E+ (A)).
4. Set Y := E+ (A) n J- (-I). Then there is a past inextensible curve

A c D-(E-(-’F)).
5. There is an inextensible causal geodesic without conjugate points in

D(E- ( F)).

The last property 4 is in contradiction with (i) of Proposition 9.3.1.

Lemma 9.3.1. Let A be a closed achronal set. Then the inclusion

H+(E+(A)) C H+(,9J+(A))

holds.

Proof. Let x (E H+(E+ A)) \ H+ (,OJ+ (A)). From E+ (A) C YJ+ (A) we

obtain D+(E+ (A)) C D+ (,9J+ (A)) and therefore x E I- (D+ ((9J+ (Affl.
Hence there is a y E 1+ (x) n D+ ((,9J+ (A))).

We will first show that I+ (x) n 1-(y) does not intersect 9J+ (A).
Assume that there is a point z E aJ+ (A) n 1+ (x) n I- (y). Then the

open set 1-(z) is a neighbourhood of x E H+(E+ (A)) and intersects

therefore D+(E+ (A)). Since every past inextensible timelike curve with

future endpoint in D+ (E+ (A)) intersects E+ (A) c aJ+ (A) we would

find a point  E I- (z)naJ+ (A) C I- (c)J+ (A))nc)J+ (A) in contradiction

to the achronality of aJ+ (A).
Since I- (y) is a neighbourhood of x E H+(E+ (A)) and 1+ (x) n1- (y)

does not intersect 9J+(A) there is a past inextensible timelike curve
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-y which has future endpoint y and does not intersect E-4- (A). From

y E D+((,9J+ (A))) we see that -y does intersect aJ+ (A) at some point z.

Let M be the generator of aJ+ (A) with future endpoint z. By Corollary
8.3.1 this generator is either past inextensible or intersects edge(A). We
will show that both cases lead to a contradiction.

Assume first that there is a point  G edge(A) which is intersected

by M. This point also lies in A since A is closed. Hence /-t is contained in

J+ (A) which in turn implies z E J+ (A) n aJ+ (A) = E+ (A). This is a

contradiction to the construction of -/.

Assume that /t is past inextensible and does not intersect A. Since

-y is timelike and has future endpoint in D+ (,9J+ (A)) it intersects the set

int(D+ (aJ+ (A))). This implies that /.t intersects I- (c9J+ (A)) (cf. Lemma
8.3.6). The inclusion 1L c 9J+ (A) gives a contradiction to the achronality
of 9J+ (A). I

Lemma 9.3.2. Let A be a closed achronal set such that J+ (A) is strongly
causal. Then H+(E+(A)) is non-compact or empty.

Proof Suppose that H+(E+ (A)) is non-empty but compact. Since J+ (A)
is strongly causal, H+(E+(A)) can be covered by a finite number of

convex neighbourhoods Ui with compact closure such that no Ui is in-

tersected twice by any causal curve. Let zi e H+(E+(A)) and Ui(,)
be one of the convex neighbourhoods Ui with zI E Ui(I). Because of

Lemma 9.3.1 there is a point x, E J+ (A) n (Ui(,) \ D+(,9J(A))). By
Lemma 8.3.8, there is a timelike past inextensible curve a, through x,

which does not intersect D+ (aJ(A)). Hence a, neither intersects’9J+ (A)
nor D+(E+(A)). Since a, does not intersect OJ+(A) it is contained in

int(J+(A)) = I+(A). The curve a, leaves Ui(,) because of its compact-
ness. There is a point yl E a, \ Ui(,) c I+ (A). Let 31 be a past directed

timelike curve from y, to A. Since A c E+(A) and E+ (A) is an achronal

(topological) hypersurface this curve must intersect D+(E+(A)) and

thereforealso H+(E+(A)). Let Z2 cz 13,nH+(E+(A)) andletUi(2) beone

of the convex neighbourhoods Ui with Z2 C Ui(2). The neighbourhoods

Ui(,) and Ui(2) are different since by construction we have Z2 E J-(Zl)
and since no Ui can be entered by any causal curve twice. By induc-

tion we obtain an infinite sequence of pairwise disjunct neighbourhoods

Jui(k)JkEN in contradiction the finite number of sets Ui. I

Lemma 9.3.3. Let A be a closed achronal set such that J+ (A) is strongly
causal and assume that E+ (A) is compact. Then there exists a future in-

extensible timelike curve -y which is wholly contained in D+(,4’+ (A)).

Proof. Without loss of generality we can assume that (M, g) is time

oriented. Hence there exists a timelike, time oriented vector field V on
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M. Since E+ (A) is an achronal hypersurface all future directed timelike

curves with past endpoint in E+ (A) are initially in int(D+(E+ (A))). If

every integral curve of V intersected H+ (E+ (A)) after having intersected

E+ (A), we would obtain a continuous map E+ (A) -4 H+ (E+ (A)), x 1-4

Ft(_-)(x) where F is the flow of V and t(x) > 0 the unique number

with Ft(,,)(x) E H+(E+(A)). This map would be surjective because,

by Lemma 8.3.8, every past inextensible timelike curve which intersects

the event horizon of a closed set must intersect this set as well. Since

E+ (A) is compact, H+ (E+ (A)) would also be compact in contradiction

to Lemma 9.3.2. Hence there is at least one future inextensible integral
curve -y of V which is contained in int(D+(E+(A))). I

Lemma 9.3.4. Let (M, g) be a causal geodesically complete and strongly
causal spacetime in which every inextensible causal geodesic has a pair

of conjugate points. Let A be a closed achronal set with compact fu-
ture horismos E+ (A) and let ^/ be a future inextensible timelike curve in

D+(E+ (A)).
Then there exists a past inextensible timelike curve A which is con-

tained in D- (E- (,F)), where F = E+ (A) n J- (-y).

Proof. We will first show the inclusion E- (.F) C  T U aJ- (-().
Let x E E- (-’F) \ F. If there was a point Jr’ E I- (x) n E+ (A) then

I+ (. ) would be a neighbourhood of x and therefore intersect I- (E+ (A))
in contradiction to the achronality of E+ (A). Hence I

-

(x) n E+ (A) = 0.

If x E I- (-y) then there is a z E I+ (x) n I- (-y). Denote by p a timelike

curve from x through z to -y. This curve must intersect E+ (A) since

7 C D+(E+ (A)) and I- (x) n E+ (A) = 0. Since this intersection point

is in E+ (A) n I- (-y) C JF we obtain x E I- (T) in contradiction to the

assumption x E E- (.F). Hence we have x E J- (.F) \ I- (-y) C J-

I- (-y) = OJ- (-y) and the assertion E- (.F) C F U,9J- (-y) follows.

The set T is the intersection of a closed and a compact set and there-

fore compact. Since 7 is future inextensible, all generators of OJ- (-Y)
must be future inextensible as well. Suppose, there was a sequence Oi of

generators of E-(T) with diverging affine lengths. Since _’F is compact,

there would exist a cluster curve 3 Of PiIiEN which would be past in-

extensible. But then its geodesic prolongation would be an inextensible

generator of 9J- (7). By assumption this generator cannot be achronal

which gives a contradiction to the to the achronality of OJ- (-y). Hence

E-(-F) is compact and we can apply the time reverse of Lemma 9.3.3.

1

Lemma 9.3.5. Let C be a compact subset of M. If D+ (C) contains a

future inextensible timelike curve y and D- (C) n J- (-/) contains a past

inextensible timelike curve A, then D(C) contains an inextensible causal

geodesic without conjugate points
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Proof. Let fYiliErq be a sequence of points in 7 without accumulation

point such that yi+1 E I+(yi). Choose a sequence f-TibEN in A such

that yi E 1+(xi) and xi E I+(xi+,) for all i. For every i we obtain

a causal curve [ii which joins xi via C to Yi. This causal curve is con-

tained in a globally hyperbolic set (Theorem 8.3.1) and can therefore be

replaced by a maximal geodesic segment pi (Proposition 8.2.2). With-

out loss of generality we have pi(O) E C. Then the oriented half lines

f (R+ \ f01) - Ai(O) : i E NJ have an accumulation point f in the space of

causal directions over C, because this space is compact. Any inextensible

geodesic p with A(O) E f is a cluster curve of the sequence fpibErq. Since

any cluster curve of maximal geodesics is maximal, the curve p does not

have a pair of conjugate points. I

Proof of Proposition 9.3. 1. We only need to choose C = E- 1

9.3.1 Applications of the singularity theorem

(i) Consider the Schwarzschild solution. It satisfies all assumptions of

Theorem 9.3.1 with the exception of the genericity condition. How-

ever, it seems plausible that any generic perturbation of the Schwarz-

schild solution using a reasonable matter model should result in a

spacetime which satisfies all the assumptions. Here it s important
that the existence of a strictly closed trapped surface is an open con-

dition, i.e., if a spacetime which contains a strictly closed trapped
surface is slightly perturbed then this surface is also a strictly closed

trapped surface in the perturbed spacetime. Hence Corollary 9.1.1

indicates that the Schwarzschild singularity is stable under (physi-
cally reasonable) perturbations. In particular, it is not an artifact of

the high symmetry of the Schwarzschild spacetime. This application
of Corollary 9.1.1 is one of the main reasons why the existence of

black holes is widely accepted.

(ii) Consider a Robertson Walker solution without cosmological con-

stant and spacelike hypersurfaces of constant, positive sectional cur-

vature. These spacelike hypersurfaces t = const are compact achro-

nal sets without edge. The Ricci tensor, which is given by

Ric =T- tr(T)g . -1 (3(c+p) + (E-p))O 00 + (E-p)g
2 2 ) I

is positive definite for e > p > 0. Hence in this case the timelike con-

vergence and the genericity conditions are both satisfied. It follows

that all assumption of Theorem 9.3.1 hold even if the spacetime is

slightly perturbed. This indicates that (at least for closed universes)
the big bang is not an artifact of the symmetry properties of the

Robertson Walker cosmologies.
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(iii) Consider again a Robertson Walker solution (M,g) of arbitrary
constant sectional curvature and assume that c > p > 0. Then the

genericity and the timelike convergence conditions are satisfied. We

will now show that (M, g) contains a strictly closed trapped surface.

By Corollary 6.1.2 there are coordinates (t, r, 0,  o) and a positive

function t F-4 a(t) such that

g = -dt2 + a2(t) ( I -1-r2 dr2 + r2 (d02 + sin2 (O)d 02)

Consider the codim-2 surface Ti,, ) = fx : t(x) = i, r(x) =  J. This

surface is clearly compact and spacelike. The vector fields

N =

1
at

 1_6 r2
ar

2 ( a

along Tj,, are normalised null vector fields orthogonal to Ti,p and

the corresponding 1-forms are given by

(N) -1 dt
a

dr
2 VJ_--Er2

Hence

0 trT,,,,, (7N) (VaON (ao) + Va N (aw))a2r2 sin2 (0)
2 2

VaONI(ao) -ro’O (N)i,
2-2 a2r2a r

where for the third equation we have used spherical symmetry. Since

for i E ft, rJ we have r,9 0 = 1 ii (2aogjo - aigoo) -Ig"ai (a2r2)29 2

we obtain roto = -atala and FO’O = -1/r. This implies

2

(1’Ot,9(N)t + Foro(N)r) =
2 (_,9ta :F

a ) .

a2r2 a2r2 2a r V/’J_--Er2

Hence for a < 1, Ota > 0 both expansions, 0 are negative. Since

these inequalities are satisfied near the big bang we can apply the

time reverse of Theorem 9.3.1 to infer the existence of a singular-

ity. In fact, in our example this singularity is just the big bang.4

If we perturb our spacetime slightly all assumptions of Theorem

9.3.1 are still satisfied. Hence we can conclude that the perturbed

spacetime also contains an incomplete, inextensible causal geodesic.
It is therefore natural to expect that the big bang is stable under

perturbations of the metric.

4
Note, however, that Theorem 9.3.1 does not make any assertion about the

location of the singularity. In particular, it does not assert whether it is to

the future or to the past of the strictly closed trapped surface.
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(iv) Using condition (c) of Theorem 9.3.1 it is also possible to give argu-

ments in favour of the existence of a singularity without assuming
that our universe is well described by a Robertson Walker space-

time. This argument requires assumptions on the spectrum of the

microwave background radiation and is therefore beyond the scope

of this book (cf. (Hawking and Ellis 1973, pp. 354 - 359)).

9.3.2 General problems with Theorem 9.3.1

These physical applications of Theorem 9.3.1 suffer from two defects

which are often considered to be negligible. Firstly, instead of the for-

mation of singularities spacetime could form closed timelike curves. Sec-

ondly, even if singularities occur, Theorem 9.3.1 does not predict their

strength. For a long time, it has been thought that these problems are

only technical and that the theorem could be sharpened accordingly.
Unfortunately, this is not the case. In Sect. 9.4 we will present an ex-

ample (due to Newman) that the chronology condition is necessary for

Theorem 9.3.1. In Sect. 9.5 we will show that Theorem 9.3.1 may only
predict the existence of singularities which are too weak to be taken se-

riously by most physicists. At the time of writing it is not clear whether

it is possible to improve on Theorem 9.3.1 if additional physically realis-

tic assumptions are made. It should be remarked that other singularity
theorems suffer similar defects.

9.4 Singularities and causality violations

The chronology assumption in Theorem 9.3.1 is a global assumption and

therefore can not be verified by physical measurements. While it is often

considered to be self-evident we have seen in Chap. 8 that this view is

to be debated. It is therefore an important question whether Theorem

9.3.1 continues to hold even if the chronology condition is dropped. In

this section we will give an example due to R. P. A. C. Newman (1989)
which proves that the chronology assumption is essential. We will then

quote a generalisation of Theorem 9.3.1 which sheds some light on what

is going on.

9.4.1 The G,5del solution

The proofs of Propositions 9.4.1 and 9.4.2 consist of straightforward
but long calculations. We will not spell them out in all details. How-

ever, we will provide enough information such that a careful reader

equipped with pen & paper (better: with access to a symbolic computing
program such as REDUCE, MAPLE or MATHEMATICA) should be
able to fill in the missing details.
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In 1949, the famous mathematician Kurt G6del published a new solution

to Einstein’s equation for a dust matter model with a cosmological con-

stant. His solution is completely homogeneous and has the property that

there is a closed timelike curve through each point. Newman’s counter

example is a modification of the G6del solution.

Definition 9.4. 1. Let (t, x, y, z) be standard coordinates of R’ and w E

R+ 01. The spacetime (R4, -dt2+dX2+ 1 e2’ ‘dy2+dZ2 -2e1’2w-‘dtdy)
2

is called the G6del solution.

Proposition 9.4.1. The G6del solution is a Lorentzian spacetime and

satisfies

2
w

2

(CRic - Scalg - w g =: 81r - at )t
2 41r

It corresponds therefore to a dust solution with negative cosmological
constant.

Proof. For the first claim observe that (,Ot) -(dt + e"2xdy) implies

9 090 0 (cQ + dX2 +
1
e2V"2wxdY2 + dZ2.

2

For the second claim we will have to calculate the Ricci tensor. Since the

metric depends on only one variable this is a simple task and left to the

reader. Here we only note that the values of the Christoffel symbols are

- vr2wx
Fttx Vt

t
2w

, Ftyx = F,,Yt v"2we- ’ ’2"x
, Ftxy = Fyxt =\1-2we

’" I’xFt -we
2v 2wx

Y
we""-2rx,

YX yy72 2

where it is understood that all other Christoffel symbols vanish. The

Ricci tensor reads then

Ric = 2w
2 (dt2 + e2vr2xdY2 + 2ev2)xdtdy) = 2U,2 (at

and we obtain

Ric - Scalg . W2 (2 (at) (,Ot)
b
+ g) .

2

The following lemma implies that the G6del solution is homogeneous in

space and time.

Lemma 9.4.1. For any two points p, q G M there is an isometry

0: M --+ M which satisfies 0(p) = q.
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Proof. The spacetime M admits the following four I-parameter groups
of isometries5.

01 (a): (t, x, y, z) - (t + a, x, y, z)

02(a): x, y, z) F-4 x + a, ye- Z)

03 (a): -X, Y) Z) X, Y + a, Z)

04 (Ce) : (t 7 X, Y) Z) X, Y, Z + a)

It follows that for any p, q E M there are numbers al, 04 such that

P  ::::: 04 (CQ) 0 03 (013) 0 02 (Ce2) o 01 (al) (q). I

The following lemma implies that the G6del spacetime does not contain

singularities.

Lemma 9.4.2. Each inextensible causal geodesic in (M, g) is complete.

Proof. We will first partially solve the system of equations for geodesics.
To this end it is practical to work with slightly different coordinates.

Consider the global coordinate transformation 0: M --+ R x R+ \101 xR2,
(t, x, y, z) i-->  , i) where t = T, v,"2-wx = - ln(V2_wJc), y = /2_ , and

z In these coordinates the metric reads

g -(d+
I

d )2 +
I

(dj 2 + d 2) + di2.
W_ -- W 2’ C7-2

We have the I-parameter families of isometries

V) I (a): (i,  , i-)  -4 ( + a, x,  , -)

02 (a) : (ij  I  )  -4 ( ) (I + a)_: _, (I + a) , ;E)

03 (01): ( 7 - ,  7 0  --> V7 7,  + a, - )
,

1  7 _ )  -4 (f, _: j  j _; + ce).04 (a): (f, : 

The corresponding Killing vector fields are

6 = (9E, 6 =:: + 0 , 63  4

These Killing vector fields give four constants of motion along the geode-
sic, (6j, ci is constant. Writing -y(-r) i(-r)) we

obtain

x yx - 2wJU -Y
C, = -t

-
-

WX
2 TW2,;, -’

W2X2
C3 = Z-

This is a linear system of equations for (fx,y-,z-), and its solution is

given by

The isometry group is five-dimensional, but the additional 1-parameter
group of isometries is not important for the argument.
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2
+t= cl - 2w 2w  C3)i Y 20)2;, : -C3)’ C4-: C3) X (C2

If we rename (Cl, C2, C3  ,
C

d,
: we obtain
v2C! T 

V 2j; V2-w-i-
t

v/2-C
X

C

v/2_wJ (.’r - V) d
-7 Z= --

’ (9.4.3)
C C

We can assume without loss of generality that 71 E 1, 0, 1

Inserting our Values for i into this equation we obtain

- - d /)2 + : 1)2 2
+ qC2.

2

Hence the projection of -y to the (x, y)-plane traverses an arc of a cir-

cle with centre and radius 2 ’
- d2 +,qC2. Observe that forV 2

causal geodesics we have the inequality

<
-

2

which implies that the circle is wholly contained in a compact subset of

R+ \ 101 x R. In particular, the coordinates: ,  in remain bounded along

,y. Equations 9.4.1 imply that  is bounded in our coordinate system.

Since these coordinates are global, it follows that the affine parameter

must range from -oo to oo. I

The G6del solution is axially symmetric with respect to any point. To

see this, we will introduce different coordinates.

Proposition 9.4.2. There is a dense open set N C M and coordinates

(8, r,  0,,i) E R x R+ \ f01 x S’ x R such that 91N is given by

g = 2w-2( - d82 + dr2 + sinh2r(I - sinh
2
r)dW2

+ d’ 2 - 2V2-sinh2 rd ods).

Proof. Observe that the metric is a direct product, (M, g) = (R3
X

R, h + dz2) with h = -dt2 + dX2 + Ie2Nf2"dy2 - 2eV2"dtdy. Hence it is
2

sufficient to show that there is a dense open set 9 C R
3 and coordinates

(s, r,  o) such that

hll = 2L,)2 (-dS2 + dr2 + sinh2r(i - sinh2r)d 02 - 2N 2 sinh
2 rd ods) .
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The assertion follows then with i = 12 z. We define the coordinates
V2w

(s, r, W) via the equations

ev2wx = cosh(2r) + cos(W) sinh(2r) (9.4.4)

wye
12wx

= sin(W) sinh(2r) (9.4.5)

tan
I

((p + wt - V2-s) = e-
2r

tan 1W (9.4.6)(2 (2 ) -

To show that h has the desired form in these coordinates is "straightfor-
ward" but very cumbersome.6

We first differentiate Equations (9.4.4)-(9.4.6) to obtain

0 vl2weV2xdx - 2(sinh(2r) + cos( p) cosh(2r))dr

+ sin(W) sinh(r)dW

0 V/2_W2ev/2-wxydx + evf2-wxwdy - 2 sin(W) cosh(2r)dr
- cos(W) sinh(2r)dW

0
1

(1 + (tan(W/2 + 112wt - 112V2-s) wdt- )2)2

(1’+ (tan(W/2 + wt12 - s/v/2)) 2) _ds + 2e
-2r

tan(W/2)drV2
2

+
I ( - e

-2r (I + (tan(W/2) )2 + 1
2

+ (tan(W/2 + wt12 _ S/N/2-) ) 2dW.

In this system of equations we can eliminate y and e
V2wx using Equations

(9.4.4) and (9.4.5). The system can then be considered as a linear system
for dt, dx, dy which only depends on s, r, W, ds, dr, dW. Solving this linear

system gives (after some simplifications)

2

dt
V2-ds

-4
sm(W/2) cos(W/2)e

2

rdr

W w (Or COS2 (W12) +sin (W12) 

+
(- sin2((p12) + e

2r
- e

4r COS2 (W12)) dW

W (Or COS2 (W12) + (sin(W/2) )2)
4r COS2 ( o12) - 2 sin2(W12)) dr

dx 1/2
v2 (2e

4r COS2 2
w (e (W12) + sin (W12))

In fact, in his original paper, G6del chose to derive this form independently
of the geometric assumptions which led him to the metric.
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+1/2
V2_sin(112 o) cos(W/2) (I - e4r) dw
w (Or C092 (W12) + sin

2

(w12))

dy = 4
sin( o/2) cos(W/2)e4’dr

w (Or COS2( p/2) + sin
2
(V12) )2

+1/2
(sin2(W12) + es’ COS2 (W12) - e4r) dW

w (e4r COS2 (W12) + sin%o/2))2

We can now simply calculate h = -dt2 + dX2 + Ie2/2xdy2 - 2eV2"dtdy2

in the coordinates (s, r,  p) using our expressions for dt, dx, dy and Equa-
tion (9.4.4) (which is equivalent to

ev"2wx = e-
2r (e4r COS2 (W12) + (sin( p/2) )2)).

This gives with

A(r,  p) = sin2( p12) + e8 r COS2 (W12) - e4

B(r,W) = -sin2(W12) + e
2 r

- e4 rCos2(W/2)

and using trigonometric identities

g -2
ds2 v/2-e-2 rA(r, W) + 2B (r, W) V2_

dW ds
C 2

+ ( W2 (e4 r COS2 (W/2) + sin2(W12))

+ (8e
-4r sin2(W12) COS2 (W12) (e4r)2

W2 (e4 r COS2 (W/2) + sin2( p12) )2

+2
(sin2(W12) - e4 r COS2 (W12) )2

dr
2

W2 (e4 r COS2 (W12) + sin2 (W12)) )
+

(B (r,  0))2 + B(r,  o)e-2 ’rA(r, W)

W2 (e4 r COS2 (W12) + (sin( o/2) )2)2
1
e
-4r (A(r, W))2 _ I COS2(W/2) sin2(W12) (I - e4r)29

d p2
W

2 (e4 r COS2 (W/2) + sin2( p12))2
2( ’32 2 2 2 W2 z22w- - d + dr + sinh r (1 - sinh r)d +d,

2V2 sinh2rdWds).

We will now show that there are spacelike submanifolds given by r

const, s = const which have vanishing expansions. They are our candi-

dates for strictly closed trapped surfaces in a suitably perturbed metric.
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Proposition 9.4.3. Let E R,  E R+ \ 101, and Tg,, be the codim-

2 surface given by s = r =  . Then Tg,p is spacelike if and only if

 < In(I + v’-2). In this case its rnean curvature vector field reads

H
I - 2 sinh2(r)

(N+ N-),
2V2-sinh(r) cosh(r)

where

 /l - sinh
2
(r)

N = -0 -01+ av
f-

cosh(r)  ,F2v 2 cosh(r)V1 - sini7(r)

are a pair of normalised null vector fields orthogonal to Tg,, .

Proof. Since g = h + dz2 is a direct product it is sufficient to prove

the analogous assertion for h. For any x E Tg, the tangent space of

Tg,p is spanned by Ov. It is clear that h(i9,, 9v) > 0 if and only if r <

sinh-
1
(1) = In(I + v’2-). We first calculate N. From

2 2 2

0 = h(N, c9w) = sinh (r) (1 - sinh (r)) NI’ - V2 sinh. (r)N’

we get N‘
V2 NI. The equationT--s-inh--2-(r-)

0 g(N, N)
2 2 0)2_(NI)2 + (N )2 + sinh (r) ((I - sinh (r)))N 

- 2-\/2 sinh2(r) N’PNI

(Nr)2 _
1 + sinh

2
(r)

(Ntj)2
1 - sinh

2
(r)

r Cosh(r)
_

’ and thereforeimplies N N 
V(1-sinh2(r)

N = 9,
cosh(r)

_a, + v/’2-2 - aw NI.

 I - sinh
2
(r)

I sinh (r) )
We normalise N+, N- by demanding (N+, N-) = -1. This is equivalent

to

cosh2(r)
-+ sinh2(r) (I - sinh2(r))

2

1 - sinh
2
(r) I - sinh

2
(r)

2
V2-

(Nt )22V2 sinh (r)
I - sinh2 (r)

2 cosh2 (r) t 2

2
- (NI

I - sinh (r)
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whence

N 
2

N’ - V2 sinh2(r)Nf ds + (N) dr
W2

+ (-V2 sinh
2
(r)Nj + sinh

2
(r) (I - sinh2(r))N ’ d o)

22 VF - sini (r)
_

_,v2 sinh (r)
ds dr

U)2 cosh(r) cosh(r) V1 - sinh
2
(r) v -2-

+ V2 sinh2(r)
V1 - sinh

2

(r)+ sinh2(r) (I - sinh
2
(r)) d o)v -2cosh(r) cosh(r) V1 - sinh
2
(r)

2 cosh(r)
W2 2

ds
721

dr

V2- l - sinh (r)

We can now calculate the covariant derivatives VN. Since we are only
interested in trT,,,,,(X) = and TTg,p is spanned by 19,P we
need only calculate the covariant derivative in direction aP,

tr,T,,,,(VN ) = hPPV,,N (ap) = -V ’ ((N )s-FW8,p + (N )rF rOV)
In order to calculate the Christoffel symbols Fs,,, Fr. note first that the

inverse of h is given by

1 - sinh2 1 2NF2hO =
2

z(r)
(as)2+(ar)2+

2 2 (aw)2_ 2
(r)

aWas
cosh (r) sinh (r) cosh (r) cosh

It is now a simple exercise to compute

Fr

(P
1hr(,OwhrW +,OwhWr -,9rhwp)W 2

Ihrr,9rhw o 9r (sinh2(r) (I - sinh2(r)))
2 2

sinh(r) cosh(r) (1 - 2 sinh
2
(r)),

S

W
Ih’s(,9whw, + awh,w -,9,hww) + 1hs ’(Owhww +,9whvw - Owhww)r,’
2 2

= 0.

Hence we get

sinh(r) cosh(r) (I - 2 sinh2(r))
trT (VN)

sinh2(r) cosh2(r)
I - 2sinh2(r)

V2- sinh(r) cosh(r)
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and the assertion follows now directly from Equation (9.2.2). 1

Proposition 9.4.3 implies that the surfaces T,,,,,((,+,/3)/,/2) are spacelike
and have vanishing mean curvature vector field H.

9.4.2 Newman’s example

Consider the following partial compactification of the G6del solution.

(M7 (R3
x S1, h + dZ2) where z is the natural coordinate of S1.

(Here we view S1 as the subset [0, 21r] C R, where the points 0 and

21r are identified). Clearly, (1 1,  ) is locally isometric to (M, g). Observe

that the corresponding sets Tg,p are compact (and diffeomorphic to tori)
In particular, the surfaces Tjn((1+v"3)/v/2) are closed (but not strictly

closed) trapped surfaces. It is plausible that a suitable deformation of

(M, j) will result in compact surfaces with past pointing, timelike mean

curvature vector field. This would give an example which is causally
geodesically complete and satisfies all assumptions of Theorem 9.3.1 -

with the exception of chronology. In order to preserve the causal struc-

ture of the G6del spacetime we will deform j by multiplying it with a

conformal factor f22, j?: k -4 R. We need to calculate the change of the

mean curvature vector field when j is replaced by = p2j.

Lemma 9.4.3. Let (M, g) a pseudo-Riemannian manifold and Q: M

R. Let  = f?2g and V (resp., t) the Levi-Civita connection of g (resp.,
Then for every vector field U and every 1-form A on M we have

VUA = VUA - 0-1(dQ(U)A + A(U)dQ - A(gradS?)g(U,

Proof. Denote the difference tensor of t and V by C, C(U, V) =

VUV. Let (xl,... I
Xn ) be a normal coordinate system with respect to g

centred at x E M. Then we have at Vj’k = 0 at x and therefore

(C(,9x,.,,9.j))k (’Oxiax.,,)k _ (Vaxiaxj)k ==: (ta j)k ^k

-i
aj
X rij

k1
09xi ij + ax-i ii - ax,, ij)

2

I
 Okl Va Aj + VaX.Iii - VaXAj2 ( X1,

at x. Since this is a tensor equation we can infer

C .
1
 kl (V, Ij + Vj ,, _ Vl ,j)S3 2

everywhere. From ij Q2gij and  ’j == S?-2gii we get

Vijk = 2Q(ViQ)gjk
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and therefore

ryk I k1
(glj ViQ + gil Vj S?

ij 9 - gij Vi f2)

The assertion follows now directly from tA = VA - A(C(.,

Lemma 9.4.4. Let Ts,, be the projection of Tg, to M and U, V be open

neighbourhoods of ! g,p which have compact closure of and satisfy
Ti C V. Then there is a function Let f : 1 1 ---> R+ such that

f (X) (= -

2 1 2
- ( ’ DI

Oi) suppf C V,

(iii) flu only depends on t, and

(iv) Of(x) < 0 for all x E

Proof. This is a simple application of Lemma 2.1.7.

Proposition 9.4.4. Let  = In((1 + V3-)/- ,F2), -ro E (0, 1), f be the

function provided by Lemma 9.4.4 and set S?, (x) = I + -rf (x) for all x,

7- E [0,,To). Then the family  , :== (flr)2j is a deformation of j which

depends smoothly on -r and satisfies  o = j. Furthermore, there is a

-ri c- (0,-ro) such that each  , (-r c (0,T1)) contains a strictly closed

trapped surface.

Proof The first assertion is trivial and we only have to show the existence

of a strictly closed trapped surface for -F > 0 sufficiently small. Consider

the surface We must show that trt’, (VN) are both negative. Here

9 = f?,-’N denotes a pair of normalised null vector fields orthogonal
to We can restrict attention to U and obtain

0  Vv +  "V&(N)
 
(a;,)

(gwwta
W
(N) (aw) + g"t’

az(N) (a,))

Q-1 (gwP (Vaw(N) (ap) - S?-’(-df2(N))gpv

=0

+ gzz ( V"z(N) (a,) -071(-dQ(N))ga-,p.))
1 - 2sinh

2
(r)
_+ f2-1

1 - sinh2(r)
dQ(N)

v,r2- sinh(r) cosh(r) cosh2(r)

+ Q-’dQ(N))
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I - 2sinh2(r) 2 V1 - sinh
2
(r)

,F2 sinh(r) cosh(r) cosh2(r) -,/-2cosh(r)

Inserting r this gives

01 == Q-2.
2 Vrl7sin]? (r)

cosh2 (r)
(19, Q)

V2_ cosh(r)
< 0.

I

It is clear that for -r small enough the genericity and timelike convergence

conditions are still satisfied. Hence for -r small enough the spacetime

(M,  ,) is complete but satisfies all assumption of Theorem 9.3.1 with

the exception of the chronology condition.

It is possible estimate which kinds of causality violation can invalidate

Theorem 9.3. 1. In the proof of Theorem 9.3.1 the future horismos E+ (T)
of the strictly closed trapped surface T played a significant r6le. In a

spacetime with chronology violations (and in particular in our example)
this set is in general empty. However, there is a generalisation of the

non-global features of a horismos.

Definition 9.4.2. Let (M, g) be a time oriented spacetime and D be a

compact set which is achronal in some neighbourhood of U of D.

(i) Let -y: [0, b) be a future directed future inextensible null geodesic

starting in D. A point x = -y(t) is called a focal point, if

(a) for all -y(t+) (t+ > t) there is a timelike curve from D to -Y(t+
arbitrarily close to -y,

(b) There is not any t- < t such that D and -y(t-) can be connected

by timelike curves arbitrarily close to -/.

(ii) Denote by -yx: [0, b(x)) the maximal geodesic prolongation of the

generator of E+ (D, U) with starting point x = -y (0) E D which does

not have a focal point. The generalised future horismos of D is the

closure e+(D) of the set E M : x E Dj.
(iii) The generalised future focal set of D is defined by

f
+(D) y E e+ (D) : y is future endpoint

of some generator -y., of e+ (D)

e- (D) and f
-

(D) are defined analogously.

It is clear that for every spacetime and every compact set D we have

E+(D) C e+(D) and D C e+(D). The future horismos is always a

Lipschitz hypersurface with induced degenerate metric. A similar prop-

erty is also true for e+(D).
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Lemma 9.4-5. Let p C e+(D) be a causal curve. Then p is either

- a subset of a null geodesic generator -y., of e+ (D) or

- a causal curve contained in f+ (D) or

- a concatenation a subset of a null geodesic generator and of a causal

curve contained in f+ (D) .

Proof .
If y is a non-trivial curve in e+ (D) which is not a part of a

generator of e+(D) and does not lie in f+(D), then it is intersected

transversely by some generator -y., of e+ (D). Hence there exists a broken,
causal curve A in e+ (D) \ f+ (D) with past endpoint in D. Let y (-= A be

a point s after this break and 7, the generator of e+ (D) with future

endpoint y. Using our broken causal curve we see that there is a timelike

curve from D to y arbitrarily close to -y,,. This gives a contradiction to

the definition of e+(D)- I

Hence any closed causal curve arbitrarily close to the generalised future

horismos must lie in f+ (D). This is exactly what happens in the example
of Newman. The null geodesic generators of e+(Tg,,p) end in a caustic

f+ (Tg,p) which is ruled by closed null curves of the form s = const,

r = const, z = const. Observe that these curves am not null geodesics.
The existence of these curves is basically the reason why Theorem 9.3.1

fails in the presence of causality violation. Notice that we can slightly

generalise our example such that f+ (Eg,f ) is not ruled by closed causal

curve but only by almost closed causal curves. We simply replace the

identification (s, r, W + 27r, z) = (s, r, W, z) by an identification (s, r, W +

27r, z) = (s, r, W, z + a) such that the quotient a/27r is irrational. It is

clear that the curves -y locally defined by 8 = const, r = const, z = const

are not closed but satisfy instead:

For each -y(t) and each (small enough) neighbourhood V of -1(t)
there is a t+ > t such that the segment of - between -y(t) and

-y(t+) leaves V and then re-enters this set.

All other properties of our example are unchanged since the new space-

time is locally isometric to the old one. In order to state a theorem which

justifies the claim that the only impediment to a version of Theorem 9.3.1

in the presence of causality violation is the possible existence of almost

closed causal curves in f+ (T) we need the following technical definition.

Definition 9.4.3. Let -y be a curve and choose any Riemannian met-

Tic h on M. Let ft: (a, b) be a reparameterisation of -y which satisfies

h(A, A) = 1. We call -y almost closed if there exists a vector u E

JA(t) : t E (a, b) I such that for every neighbourhood it of u in TM there

exists a deformation A of 1,t in 7rTM(5-0 which yields a closed curve and

satisfies X(t) E WTM(it) -,:*  (t) E 3A.

Observe that this definition is independent of the choice of h.
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Theorem 9.4. 1. A spacetime (M, g) is not causal geodesically complete
if

(i) the timelike convergence condition and the genericity condition

hold, -

(ii) there exists at least one of the following:
(a) a (locally spacelike) strictly closed trapped surface T,

(b) a compact achronal set T without edge,

(c) a point x such that along every past (or every future) inexten-

sible null geodesic from x the expansion of the null geodesics
starting at x becomes negative,

(iii) neither f+ (T) (respectively, f+ (fxJ) nor any f
-

(D), where D

is a compact topological submanifold (possibly with boundary) with

D n T = 0 (respectively, x E D) contains any almost closed causal

curve that is a cluster curve of a sequence of closed timelike curves.

This is a proper generalisation of Theorem -93.1. The technical condi-

tion (iii) just states the situation which we have already anticipated by
analyzing Newman’s example. The proof of Theorem 9.4.1 is far too

technical to be reproduced here. It basically consists of a cutting and

pasting procedure (Kriele 1990).

The closed trapped surface in Newman’s counter example has the topol-

ogy of a torus. In a physically realistic collapse scenario of a star one

would rather expect that there exists a closed trapped surface of topol-

ogy S’ surrounding the collapsing star. This motivates the following
conjecture:

Conjecture 9.4. 1. A 4-dimensional spacetime (M, g) is not causal geodesi-
cally complete if

(i) the timelike convergence condition and the genericity condition

hold,

(ii) there exists a strictly closed trapped surface of topology S’.

In Newman’s example the generalised future focal set of T Jn((I+V 3_)/2)
is generated by closed null curves. This is impossible if T has topology

2S

In spite of this small piece of evidence and the importance of Conjec-
ture 9.4.1 for our interpretation of singularity theorems it is completely
open whether this conjecture is true or not.

9.5 Strength of singularities and cosmic censorship

In this section we will investigate the character of the singularities pre-
dicted by Theorem 9. 3. 1. We will also give an example (cf. Sect. 9.5. 1)
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which shows that the theorem of Hawking and Penrose may only im-

ply the existence of "singularities" which are so weak that the energy

density exists in a distributional sense. Our example is not very phys-
ical - for a start, it is 3-di’mensional rather than 4-dimensional. On

the other hand, it is a good test case for the mechanism behind the

singularity theorems.

The existence of incomplete causal geodesic does not imply that there

is a singularity. This is the reason why "singularity theorems" are often

referred to as "incompleteness theorems". The standard counter example
in general relativity is the Taub-NUT spacetime (cf. (Hawking and Ellis

1973, chapter 5.8). The following two-dimensional example is especially
simple.

Example 9. 5. 1 (Clifford-Pohl torus
.
Let (M, g) = (R2\f0J, 2

dudv)._UTTV_T
Then the curve -y(t) 0) is an incomplete geodesic and the map

0: (u, v)  -4 (2u, 2v) is an isometry. Defining

x - y :<= Elk G Z with Ok(X) = Y, 7r: X  _4 [X].

we obtain a compact Lorentzian torus (ir(M), 7rg). The curve 7r(-Y) is an

incomplete lightlike geodesic in this compact and therefore non-singular
spacetime.

While Example 9.5.1 shows that there exist spacetimes which are non-

singular and geodesically incomplete, so far there is no example of such

a spacetime which satisfies the assumptions of Theorem 9.3.1. In fact,
it is believed that the incomplete geodesics predicted by the singularity
theorems are of a different nature. The justification for this expectation
is the fact that a non-compact or empty "Cauchy horizon" plays an

important r6le in the proof of the theorem of Hawking and Penrose.

Since the Cauchy horizon is necessarily closed, one would expect that a

Cauchy horizon due to compactly imprisoned curves (such as in Example
9.5.1 above) is compact and non-empty. This motivates the following
conjecture.

Conjecture 9.5. 1. If the assumptions of Theorem 9.3.1 are satisfied, then

there exists a causal inextensible incomplete geodesic which leaves every

compact subset in both future and past direction.

Using an approximation argument one can show that the singularity pre-

dicted by the theorem of Hawking & Penrose is not just due to g merely

being C2- instead of C2
.
There also exist upper bounds on the diver-

gence of the curvature along any incomplete geodesic -/ which are large
enough to allow for the possibility of strong curvature singularities,i.e,
curvature scalars which not only diverge but whose integral over an ap-

propriate spacetime region diverges as well. Unfortunately, we have no

curvature estimates for anything in between these two extremes.
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If, in general, the singularity predicted by Theorem 9.3.1 were only
weak, this theorem would only predict the existence of "shockwaves" and

we would lack evidence for the existence of serious singularities such as

black holes, The following conjecture (formulated by Hawking & Ellis

(Hawking and Ellis 1973) with respect to a slightly different singularity

theorem) is therefore central to our interpretation.

Conjecture 9. 5.2. Assume that (M, g) is chronological, satisfies the time-

like convergence and the genericity condition and contains a closed trap-

ped surface. Then there exists an incomplete, future inextensible geodesic

-y and a neighbourhood U of -y such that Vol(U) < oo and fu f(R)y = oo

for some curvature invariant f(R) which is (positively) homogeneous in

the Riemann tensor, f(AR) = 1,\ I f (R) for all A > 0.

The homogeneity condition is important because otherwise we could

take an appropriate power of a weakly diverging curvature invariant in

order to obtain a diverging integral: While
1
-1--dx is finite, the integralfo, _X

fo 716dx is not.

Hawking & Ellis state that while they are convinced of the validity
of such a conjecture’ they are unable to prove it. In Sect. 9.5.1 below we

will give a 3-dimensional example which indicates that Conjecture 9.5.2

may not be true in the present form.

If there is a singularity in our universe, we would like to interpret
it as a black hole, i.e., we would hope that it is invisible - just as the

singularity in the Schwarzschild spacetime. Otherwise we would not have

a chance to globally solve Einstein’s equation as a Cauchy problem since

the singularity (whose data are unknown) would influence the geometry
of spacetime to its future. There are also important theorems for our

interpretation of black holes which need a assumption similar to cosmic

censorship. The prime example is the "area theorem" due to Hawking
which states that the area of black holes can only increase8) (Wald 1984,
theorem 12.2.6).

Since it is easy to find examples of inextensible Lorentzian manifolds

which contain visible (or "naked") singularities, additional assumptions
on spacetime must be made in any conjecture which "censors" naked

singularities. The following conjecture is due to Penrose.

Conjecture 9.5.3 ((strong) cosmic censorship). If (M, g) is qualitatively
stable and its matter model T is physically reasonable then no future

incomplete, future inextensible causal geodesic -/ lies in the past of any

XEM.

7They state their conjecture with respect to a different singularity theorem.
8 This is only true in classical general relativity without taking quantum

effects into account
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It is not sufficient just to demand a "physically reasonable" matter model

because of the Reissner-Nordstr6m solution,

27n e2) dt2 + (I
27n

+ e2) _1d 2
9 - + - - - r

r r2 r r2

+r
2 (d02 + sin2OdW2)

The energy momentum tensor T (Ric - (Scal/2)g) is given by81r

T =

e

4
U5 Ub _ Qb Qb +r2 (d02 + sin2OdW2))87rr

where we have set

U (I
2m e2)

2 2m e2

)
’21

;72-
19t

I Q
r r2

ar

This spherically symmetric spacetime satisfies Einstein’s equations for

an electromagnetic field (cf. Lemma 7.4-1) which is certainly "physically
reasonable". On the other hand, unlike in the case of the Schwarzschild

solution (e = 0) where the hypersurfaces r = const < I are space-

like, the hypersurfaces r = const < I in the Reissner-Nordstr6m so-

lution are timelike. It is easy to see that there exist points x, y G M

such that 1+(x) n 1-(y) contains timelike future inextensible curves

which approach r = 0. (For a more thorough discussion of the Reissner-

Nordstr6m spacetime including its global properties cf. (Hawking and El-

lis 1973, chapter 5.5)). This Reissner-Nordstr6m spacetime therefore vi-

olates Conjecture 9.5.3 if it is qualitatively stable. Calculations by Simp-
son and Penrose (1973) and McNamara (1978) indicate that this is not

the case for an intuitive notion of stability. It is generally believed that

a generic, physically acceptable perturbation of the Reissner-Nordstr6m

spacetime results in a spacetime which is qualitatively more similar to the

Schwarzschild spacetime, even though the Reissner-Nordstr6m spacetime

itself can be thought of as a perturbation of the Schwarzschild spacetime.

9.5.1 A simple, 3-dimensional example

Let (M, g) be a 3-dimensional spacetime and assume that the energy

momentum tensor is given by T = cUb (9 0 where U be the spacetime

velocity of the dust particles and e their energy density. We are seeking
solutions of Einstein’s equation

Ric - 1Scalg = 81rEU (9 U5,
2

where c: M -4 R is a function. In general, this is still t,oo difficult even

though we assume n = 3. Assuming that there is a foliation of spacelike

hypersurfaces orthogonal to U simplifies the problem dramatically.
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Lemma 9.5. 1. The vector field U is irrotational (i.e., dO = 0) if and

only if the Pfaffian system f0 1 is integrable.

Proof. By Lemma 2.5.8 the integrability of fU51 is equivalent to the

equation dO A 0 = 0. Recall from Lemma 5.2.1 that U satisfies the

geodesic equation VUU = 0. Let X be any vector field. Then we have

dW (X, U) = VXW(U) - VUW(X) = g(VXU, U) - g(VUU, X) =

0 - 0 since g(U, U) = -1. It follows that dO is completely determined

by evaluating it on vectors orthogonal to U. Let v, w be two vectors

orthogonal to U. Then we have dO A 0(v, w, U) = -dO(v, w) and the

equivalence follows. I

Lemma 9.5.2. Let (M, g) be an irrotational, 3-dimensional dust space-

time and let Z be a hypersurface which is orthogonal to U. If at p c Z the

second fundamental form of Z is not a multiple of the metric, then p has

a neighbourhood with coordinates (t, x, y) such that g = -dt2 + V2dX2 +
W2dy2’ where V, W are functions of t, x, y and T = 6(t, x, y)dt 0 dt.

These coordinates are unique up to transformations of the type x  -4

X(x), y  -4 Y(y), t i--> t + const. and interchanging of x and y.

Proof. Since f0 1 satisfies dW = 0 there is a function t with dt = 0.

We can write g = -dt2 + E2j=l (2)g,j (t, Xl’ X2)dx’dxj, where for each t
i,

the bilinear form (2)g(t, is a Riemannian 2-metric and Z is given by
t = to. Sinceat(2)g is not umbilic at p, there exists a frame lei, e2j Of

Z in a neighbourhood of p such that (2)g andat(2)g are both diagonal
1 2with respect to this frame. Let jw ,
W I be the dual frame. It follows

that there exist coordinates (x, y) such that at t = to both (2)g and 19t (2)g
are diagonal with respect to a, a.. In fact, we only need to show that

there exist multiples ale,, a2e-2 of el, e2 such that [alel, 012e2] == 0. This

is equivalent to dai(ei+l mod 2) + e2l) = 0 (no summation

over i) which is a system of ordinary differential equations and can be

solved by Theorem 2.4. 1. With respect to the coordinates (t, x, y) the

equations Tij = 0 (i, j E fx, yj) imply

atat(2)g,j- tr(atat (2)j) (2)g,j _
1tr (19t(2)g)at (2)gij + (2)gk1at (2)gik at (2)gjj2

+
I

( (tr (at (2)g))2 -31 at Mg 12) (2)gj.
4

Since at t = to the bilinear forms (2)gij and 19t(2)gii are diagonal, it follows

that the right hand side is also diagonal at t = to. Since the system
has a unique solution and there exists a solution when (2)

g, 19t(2)g are

simultaneously diagonal, (2)g ’,9t (2)
g Must be diagonal for all t. Hence we

have existence. For uniqueness observe that the frame lei, e2j is unique

up to multiples and permutation, and that the coordinate t is already
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chosen so that it is unique up to an additive constant. Thus any other

coordinates X, Y with the same properties must satisfy either o9-- 11 Ox
and 9,y I I Oy or 9., 11,9y and i9y 11 9x. This proves the lemma. I

Corollary 9.5.1. Let (Z, Mg) be a 2-dimensional Riemannian mani-

fold and k be a symmetric (0) tensor field which is not proportional to
2

(2)g. Then the initial value problem for irrotational, 3-dimensional dust

spacetimes with initial data (Z’ (2)g, k) reduces to a constrained system

of ordinary differential equations.

In Theorem 9.5.1 below we will summarise properties of generic, irrota-

tional, 3-dimensional dust spacetimes using standard differential geomet-

ric terminology. Consider a 2-dimensional Riemannian manifold (Z, gz)
and denote the set of unoriented lines in TZ by PZ. Then there exists

a natural map -1: PE -4 PZ which maps an unoriented line 1 E PZ to

the line orthogonal to it. We call a section 1 of PE nowhere geodesic if

for any local, non-vanishing vector field L with L(p) cz l(p) Vp we have

gz(L
1

7LL) : - 0 Vp. This condition does not depend on the chosen

representative L. It is a local but not necessarily a global genericity condi-

tion on 1. Locally, this condition is slightly stronger than demanding that

1 does not have any local integral curve which is a geodesic. Let (z, g_’)
be a 2-dimensional, spacelike submanifold of a Lorentzian 3-manifold

(M, g) with future directed normal n and second fundamental form

k(X, Y) = -g(17XY, n). We denote the bilinear form associated with the

square of the corresponding matrix by k2’ i.e., (V), = (g_r)1mkjjkj,,,.
We call the eigenvalues kj, k2 of k with respect to gz the principal cur-

vatures of Z and the (unoriented) lines spanned by the eigenvectors the

principal directions of Z.

Theorem 9.5. 1. Let (R2, (2)g) be a Riemannian 2-manifold and 1: R2

TR2 which maps each point p (2 R2 into an unoriented line l(p) C TpR2
and assume that 1 is nowhere geodesic. Let C C R2 be a smooth curve

which divides R2 into two disconnected regions such that 1 and 1--L in-

tersect TpC transversely at each p E C. Finally, let KI, K2: C --* R be

smooth junctions.

(i) Let O(C, 1, 1 the set of points p E R2 such that the integral
curves of 1 and l’ through p intersect C. There exists an irrotational,
3-dimensional dust spacetime (M, g) and an isometric embedding

L: (Z (C’ 1, 11), (2)g) ---> Z C M such that the second fundamental

form k of Z in M satisfies

(a) the principal directions of Z are given by t.1, tlj-,

(b) along C the submanifold Z has principal curvatures k, = K1,

k2 :-- K2 -

C can be chosen such that 0 (C, 1, 1 -L) = R2. Then (M, g) is inexten-

sible if (R2, (2)g) is So.
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(ii) For any p c Z let

k- (p) = min(ki (p), k2 (p)) and k+ (p) = max(ki (p), k2 (P))

The world line of the dust particle through p ends in a curvature

singularity in finite proper times
- 1

,

- 1
if k+ (p) > 0 > k- (p),k (p) k+ (p)

at finite proper time
-1

ifk-(p) > 0, at finite proper time
k (p) k+ (p)

if k+(p) < 0. There are no other singularities.

(iii) All singularities are weak in the sense that for all open sets

U with bounded volume, vol(U) = fu -, /_det(g,,b)dtdxdy < oo, the

spacetime average of the energy density,

I
e (t, x, y, z) V/Jet-(gab)dtdxdy,

vol(U) fu
is also bounded.

(iv) The spacetime is non-singular if and only if K, = K2 = 0.

(v) For generic initial data strong cosmic censorship is violated, pro-

vided one regards the solution as "qualitatively stable" and "physi-

cally reasonable".9

(vi) Generically, the data P)g, 1, K1, K2 parameterise the set of local,

irrotational, 3-dimensional dust spacetimes.

Properties (iii) and (ii) hold true in a more general context (Kriele and

Lim 1995).
Proof of Theorem 9.5. 1. (i): We can choose coordinates (x, y) such that

at each point p E R
2 the Gaussian vectors ax, ay span 1 and lj- (see the

proof of Lemma 9.5.2). The metric (2)g is diagonal in these coordinates.

0
=

(2V2 = (2)gyy.et , )gxx and W02 In view of Lemma 9.5.2 we can setL

Z =  (t, x, y) : t == 01 and assume that the dust-metric is given by g =

-dt2+V2(t, X2 +W2 (t, y2, V(O, X, y) = VO (X, Y), W(O, X, Y)x, y)d x, y)d
WO (x, y). Since the constraint Tty = 0 is equivalent to

0 =
a2V W-awav
’90y at C’)Y

we obtain either av = 0 or W = w’9v, where w is some non-vanishingay ay

function of (x, y). In the coordinates (x, y) we can write L(x, y)
f (x, y)i9., and (L(x, y))--L = h(x, y)ay, where f, h are non-vanishing
functions. The condition that I is nowhere geodesic reduces then to

f2 E2 (LV0 : 0. Thus we have ’9VO : 0. Since 0 = Tyy _)2 a2V
Wo

av
_

7tT2-ay ay V .9y

we can write V(t, x, y) == Vo (x, y) + tq(x, y). Now the equations Ttx = 0

gives

The relation of these solutions and cosmic censorship are further discussed

in (Kriele 1997).
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Fig. 9.5. 1. The singularity structure of spacetime. The case ki, k2 < 0. The

y-component of spacetime is suppressed. The singularity A is given by I +

t (49Vo/ft)
- 1

(o9q/ft) = 0 and the singularity B is given by Vo+tq = 0. Observe

that at the singularity A the light cone degenerates in the y-direction and that

at B degenerates in the x-direction. Hence there exist future directed timelike

curves emanating from the singularity and cosmic censorship is violated

0 a2Vaw av f’9W
V

q f 0 a2q
VOL f0 =

_5_X ay ax 9Y
,

_,9zay
q + w

YX,9Y
0. (9.5.7)

Re-expressing w(x, y) by Wo = w
aV0

we obtain the linear, hyperbolic
ay

partial differential equation

a2q
+ W6-1

awo
-

avo
- 1

92Vo ) 9q

axay ( ’9X ( ay ) axay ay

- (VC1’9V0 W - 1
’9Wo ) q = 0 (9.5.8)

ay ax

for the function q(x, y). The lines 1, 1j- are transverse to C. Moreover, it

follows that each integral curve of 1 and 1j- intersects C at most once. In

fact, if a coordinate line x = x0 would intersect C twice then there would

exist a point (Xm, Ym) of C in between these intersection points which

has locally maximal distance to (xo, Ym) with respect to the flat metric

dx2 + dy2 .
At this point a. would be tangent to C in contradiction to our

transversality assumption. We will now show that for given initial values

this differential equation has a unique solution in A) (C, 1, 1 ’) by reducing
it to an appropriate system of hyperbolic differential equations." Let

’0
Alternatively, we could directly appeal to standard theorems. Since the

symbol of the hyperbolic equation (9.5.8) is constant it has a unique, global
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,rl = x + y and -r
2
= x - y. With respect to these variables Equation

(9.5.8) reduces to an equation of the form

a2q a2q
= h (,ri, r2, q-,

’94
2  71  7

(&r ) 2 71
, I) ,

1 2 71

where h: R5 -* R is a suitable function. Setting F = ’94 and ’94
a7l ar2

we see that Equation (9.5.8) is equivalent to the hyperbolic system of

equations

+ h(-ri, -r2,r,
a,ri  71 197-2 197-1 097-2

The characteristic directions are given by the left eigenvalues of the ma-

trix
0 0 0

A= 0 0 1

0 1 0

11 = (I 1
0

1 0) 7
12 = (0 1 1, 1), 13 = (0, 1, - 1). These vectors are linearly in-

dependent and we can apply Corollary 7.3.2 together with Remark 7.3.1

in order to obtain a solution for given initial values. The initial values

for 4 can be, calculated from the initial values for q. If we parameterise,

C by a curve s  -4 A(s) we get

aq o A 9q

ds
=

’94
(d-ri(A)f + &F2( ))

and another linear combination for the normal derivative of q which

depends on the coordinate expression for (2)g. Hence we can calculate

the initial values for (4, f , 9) if we know q1C and its normal derivative.

Since this normal derivative can be calculated from q1C and (21)
C

we
ay

have as our initial data q1C = KjVojC and (21)
Ic

=- K2 (aVO ) -
Since

ay .9y
1 C

T,y = 0 and T 0 hold automatically this leads to a solution of

Einstein’s equation which is given by

t2 )2 X2 + W2 (aVo aq )2 Y2.g=-d +(Vo+tq d
0 1+t

ay 5 y_
d (9.5.9)

It follows immediately that the principal curvatures are given by

I
 19VO

- 1
9q

ki (x, y) = q(x, y) /Vo (x, y) and k2 (X) YJ -
Y 5Y

solution in 0 (C, 1, 1 for the initial value problem with respect to the initial

curve C C Z (Garabedian 1986, section 4.2).
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If one chooses C = J(x,y) : x = yj then O(C,1,1-L) =:= R’. Since the

solution is inextensible in t-direction (M, g) is inextensible provided
0 (C, 1, 1 -L) = R’ and (R2, (2)g) is inextensible.

(ii): The energy density is given by

6(t, X, Y) =
E(x, y)

(9.5.10)
(VO + tq) avo

+ t aq
(9y ay

where

2
aVO a2Vaq aVO aWOW -3 0 -2

1 I0 WE(x, y) =
Oy

q + (-5y-) ay --5y--W 0

avr0 a2WO 1 -1 ’OVO awo’9vo
- -2W -1W, I

OX2
VO 0 + ----

I

x 5x
VO 0

’9Y j -Oy x

(2)g == V
2

2dy2Since g is given by Equation (9.5.9) we have 0 dX2 + WO

X2 + W2 0 dy2. It follows from Equation (9.5. 10)and k = qVOd 0 (avay ay

that E may become infinite at VO + tq = 0,
aV1

+ t aq = 0 and that
ay ay

generically it will be infinite at these points. The first part of (ii) follows

immediately. To see that there is no other singularity observe that for

3-dimensional spacetimes the Riemann tensor is completely determined

by the energy momentum tensor and that therefore all Riemann tensor

components are bounded where F- is bounded.

(iii): This follows since

C9VO
(Vo + tq)

Wo
+ t

Oq
eV det(gab) EWO

Oy (-’ Y- ay)
1W

aVO
E 0

19Y

is finite.

(iv): Since the initial data for Equation (9.5.8) are given by q1C

K, VO and ( 29-)j == K2 ava the claim follows from the uniqueness theo-
ay C

ay

rem for PDES of the type (9.5.8).
(v): Since gtt = -1 and g.,., or gyy converges to zero it is easy to see

that at these singularities strong cosmic censorship is violated unless the

singularity is given by t = const. (cf. Fig. 9.5.1).
(vi): Implicitly we have assumed that the second fundamental form

and the metric can be diagonalised with respect to a smooth frame. This

may not be possible at umbilic points but points at which this problem
occurs are isolated and therefore not important for local genericity. Since
OV : 0 is also a local genericity condition, locally almost every irrota-
5-Y
tional dust spacetime can be obtained in this way. Given C, our initial

data are invariants. Hence (vi) follows. I
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Corollary 9.5.2. Almost all 3-dimensional, irrotational dust spacetimes

can be obtained by quadratures.

Proof. In Theorem 9.5.1 we have solved Einstein’s equation as an initial

value problem where Vo, Wo, q1c, ay
are given. Now we consider Vo,(22)

le

q, W01.,=_,0 as given initial data. Then we can solve Equation (9.5.8) and

obtain the explicit solution

X
V0 Voaql,9y - qaVolOy

d 
Wo = Wolx=x,,(y)e o

j9V0/j9y j92V01(9z9yaq1,9y -,92q1i9z9yaV01,9y
*

JX
(9.5.11)

1

Remark 9.5. 1. In Theorem 9.5.1 we have only considered the case where
aV0 7 0. There are additional restrictions at points with "I

= 0. It
ay ay

follows from Equation (9.5.8) that at these points either -3.2 = 0 or all
9Y

y-derivatives and mixed derivatives of V vanish. For completeness we

will discuss both cases in more detail.

If ’9V0 does not vanish identically then we can use Equation 9.5.11
ay

to Solve Einstein’s equation. Since Wo is smooth and does not vanish,
the integrand in Equation 9.5.11 must also be smooth. It follows that

in a neighbourhood of f (x, y) :
avo

= 0 at (x, y) I the y-derivative of qay

(0,9Vmust satisfy qy =
avolay 0 +

a2q ), where 0 is any function of
52VOlaXay ay axay

(x, y). If this is satisfied then we obtain a local, non-singular solution.

Otherwise we simply have specified singular initial data.

The non-generic case
aV0 0 can be easily solved. If

’9V
= 0 then

ay .9y

TXX IL2 a2W and Tyy =
W2 ’92X. Thus we can write V(t, x) = Vo (x) +W Do V at

-

tq(x) and W(t, x, y) = Wo (x, y) + ts (x, y). Now Ttx = 0 implies

,9S
Vo -

’9WO
q = 0. (9.5.12) _X ax

Since the initial metric induced on Z is given by

V2 X2 + W 2(X, Y2(x)d 0 y)d

we have Vo (x) =h 0 Vx. Thus we can use our coordinate freedom to

normalise Vo (x) = 1. Equation (9.5.12) can be immediately integrated
for any given q, Wo. We have automatically Txy = 0 and hence for any

functions q(x), Wo (x, y), w(y) we obtain a solution

t2 + (1 )2 X2 + (W (X, Y) + tS(X, Y))2 Y2,g = -d + tq(x) d 0 d

were s (x, y) = fx ’9w’( ’Y) d +w(y). The space of solutions is param-
x.

q( ) a 

eterised by the functions q(x), Wo (x, y), w(y) modulo coordinate trans-

formations (x, y)  -4 (x + xo, Y(y)). The energy density is given by
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_

a2 W,,
qs

,E(t, X, Y) = aX2
(9.5.13)

(1 + tq) (WO + ts)
’

Hence we obtain the same type of singularities as in Theorem 9.5.1.

We can express the metric provided by Theorem 9.5.1 (or the preceding
remark) in a more geometrical form.

Corollary 9.5.3. Let (M, g) be a 3-dimensional spacetime. If there ex-

ists a timelike unit length vector field U and a function E such that

T = eW 0 W and dW A W = 0, then there exist coordinates (t, x, y)
with 0 = dt and

g = -dt2 + e2a(x,y)(1 + tki (x, y))2dX2

+ e2b(x,y) (1 + tk2 (X) y))2dY2

where a, b are free functions and k1, k2 satisfy

i9yki = (k2 - kl),9ya,

,9x,9yk1 = (k2 - ki)(axi%a - 9ya,9xb) -,9xk1c’)ya.

The energy density is given by

k1k2 + ebe, 9 el 9 e-b + eae2 o e2 9 e-’
6

(1 + tki) (I + tk2)

where el = e-aa,, e2 = e-ba
Y

We will now show that our examples do not satisfy the genericity con-

dition. It turns out that otherwise they would provide counterexamples
to Conjecture 9.5.2 (cf. corollary 9.5.5 below).

Lemma 9.5.3. Let (M, g) be a 3-dimensional Pseudo-Riemannian man-

ifold. Then the Riemann tensor is completely determined by the Ricci

tensor and given by

Rijkl = 2(gi[kR,lj - gj[kR,]i) - Scalgi[kgl]j-

Proof. Proposition 4.3.2 implies that for every pair of tensors G.’, S., E

sym(T20(T,M)) there is a metric g such that g., = G,, and S., Ric.,.
In fact, we can choose coordinates (x1,x2,x3) such that (G.,)ab 77aJab
(no summation) where na E 1-1, 11. Then we simply set

1-3 1
gab (X1’ X2, X3) = (Gx)ab -

3
E  (Sx)ab?7c6cdXcXd.

C’ d=1

From the first, the third and the fourth symmetry in Proposition 4.3.1

we obtain that at a given point x the Riemann tensor of a 3-dimensional

pseudo-Riemannian manifold is already specified by the 6 components
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R1212, R1213, R1223, R1313, R1323, R2323-

Since sym(T20(T,,M)) is a 6-dimensional vector space and every tensor

S , (=- sym(T2(T.,M)) can be realised as the Ricci tensor of a metric,
the map tr: R.,  - tr(R,,) = Ric,, is linear isomorphism. The tensor

r(RiC)ijkl = 2(gi[kR,lj - gi[kR,]i) - tr(RiC)gi[kgl]j satisfies the equations
given in Proposition 4.3.1 and tr(r(Ric)) = Ric. Hence it is the Riernarm

tensor corresponding to Ric. I

Corollary 9.5-4. If (M,g) is a 3-dimensional, irrotational dust space-

time then the genericity condition does not hold.

Proof The Ricci tensor is given by Ric = r:(elb Oej + e2b (9 e?) -
It follows

directly from Lemma 9.5.3 that the components Rtjkt (j, k E It, x, yj)
of the Riernarm tensor vanish. Hence for any fixed numbers (xo, yo) the

genericity condition is violated along the timelike geodesic t  -4 (t, xO, yo).

Corollary 9.5.5. There is a 3-dimensional spacetime (M, g) which

(i) is chronological,

(ii) is geodesically inextensible,

(iii) satisfies the timelike convergence condition

(iv) contains a closed trapped surface,

(v) and contains an incomplete future inextensible geodesic -Y and

a neighbourhood U of -y such that Vol(U) < oo and fu fy < oo for
any polynomial curvature invariant f which is linear in the Riemann

tensor.

Proof. Consider a spacetime (R2 , g) as given by Corollary 9.5.3. In order

to obtain a closed trapped surface we let M = R x S1 x R = I (t, x
mod 1, y)j and b(x, y) a(x, y) == a(y). Then for each function ki (y),
the metric

g = -dt2 + e2a(I + tkl)2dX2 + (I + t(k, + (kl)’/a’) )2dY2

is a solution with

kl((ki + aykl/,9ya) + ea e2 0 e2 9 e-a

(I + tki)(1 + t(k, + (kl)’/al))

Let T := ft,x,ylt = O,y =: 01 andS = Sjjw’Ow1 bethesecond
fundamental form of T C It 01. Then up to a positive factor, the

expansions 0:: are given by 0:: k, :-F S11. It follows that T is a closed

trapped surface if ki(O) < -IS111. This can always be arranged since

ki can be freely specified. The spacetime (M, g) has a singularity at
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y = 0, t = -I/ki (0). However, this singularity is so weak that it satisfies

V01(u) < 00 = , fu Jeltim < 00. 1

Corollary 9.5.5 implies that Conjecture 9.5.2 without the genericity con-

ditions does not hold. In order to estimate the physical relevance of our

example we have to examine its special features.

(i) The genericity condition is not satisfied along the geodesic t F--+

(t, xo, yo). Its usage in the proof of Theorem 9.3.1 is to ensure the

existence of a singularity along it. Since there actually develops a

singularity at I + tki (0) = 0, the failure of (M, g) to satisfy the

genericity condition does not appear to be grave. Moreover, it seems

very likely that a perturbation of (M,g) through dust spacetimes

which are not strictly irrational will not suffer from this defect. On

the other hand, we don’t know much about the global properties of

these perturbed spacetimes. In particular, at this point of time" we

cannot exclude the possibility that they form stronger singularities

then the special spacetimes we have examined.

(ii) Our example is 3-dimensional rather than 4-dimensional. Here it is

important to note that Theorem 9.3.1 does hold for 3-dimensional

spacetimes as well as for 4-dimensional ones. Moreover, there do

exist 4-dimensional, spherically symmetric dust spacetimes which

have similar singularities (Miiller zum Hagen, Yodzis, and Seifert

1974). However, these 4-dimensional examples also contain much

stronger singularities in the centre of symmetry. One may speculate
whether these strong (central) singularities are a typical feature for

4-dimensional spacetimes. In the absence of independent evidence

disqualifying 3-dimensional models it seems fair to state that our

example indicates otherwise.

(iii) The closed trapped surface we have constructed has not much to

do with the existence of singularities. In fact, the general solution

shows that the singularities depend solely on the principal pressures

k1, k2. This indicates that the example is more appropriate to il-

lustrate condition (iii)(b) of Theorem 9.3.1 rather than condition

(iii) (a). However, the hyperbolic nature of Equation (9.5.8) greatly

restricts the existence of global solutions with compact hypersur-

face Z. Still, as an immediate consequence of Corollary 9.5.3 we

have the existence of a 3-dimensional dust spacetime for any given

2-dimensional Riemannian manifold (Z, gz) by choosing k = Agz,

where A is a constant. The energy density E is positive if JA is suf-

ficiently large.
Our construction of closed trapped surface requires (at least) a pe-

riodicity with respect to x. Observe that perturbation of our initial

data are very restricted since the differential Equation (9.5.8) does

I am writing this in 1998
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not need to respect this artificial periodicity. It is possible, however,
to construct closed trapped surfaces with are stable with respect to

arbitrary perturbations of the initial data. Choose a 2-dimensional

Riemannian manifold (Z, gz) and a closed curve T C Z. If A << 1

is small enough and k = Agz then T is a closed trapped surface.

This construction does not rely on periodicity and is therefore stable

with respect to perturbations of initial conditions.

The trapped surface has topology S’ which is qualitatively different

from S’ and more akin to the torus S’ x S1. This is inevitable

if one works with 3-dimensional spacetimes. Unlike in the case of

Conjecture 9.4.1 there there does not seem to exist evidence that

the topology of the closed trapped surface matters in our context.

(iv) One can argue that dust, arising as an idealisation from the energy

momentum tensor for collisionless gas, is not a very realistic matter

model. Moreover, even in the corresponding Newtonian theory, con-

gruences of dust tend to form weak singularities. (Rein, Rendall, and

Schaeffer 1995) has shown for spherically symmetric 4-dimensional

spacetimes representing a collisionless gas that one does not obtain

weak singularities before a central singularity has formed. This is

in striking contrast to the analogous situation in the case of dust

(Milller zum Hagen, Yodzis, and Seifert 1974). One may therefore

be tempted to disregard our example as typical for a notoriously ill

behaved matter model. However, since in our class of examples we

only obtain weak singularities, which are forced on us by the singu-
larity Theorem 9.3. 112, we are still led to conclude that singularities
(mathematically) due to the singularity theorems may be very weak

and completely different from what one may expect at first sight.

Hence whether or not our example is physically realistic, it indicates that

existing singularity theorems are not sufficient to conclude the existence

of black holes or the big bang.
One additional, physically motivated assumption could be that the

principal pressures diverge comparably to the energy density. It would

therefore be of interest to study a similar example with T = (I + 0)ew 0
w + 13eg (0 E R). For these 3-dimensional spacetimes there exist coordi-

nates (t, x, y) as above:

g = -dt2 + V2dX2 + W2dY21

T = cdt2 + Oc(dX2 + dY2).

We have some control over the location of the singularities (they must

occur before proper time 2/(ki + k2), where ki, k2 denote the principal
curvatures of the initial hypersurface). This class of solution may still

12
Here we assume that in our case the violation of the genericity condition is
irrelevant
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be manageable and can give us an important clue as to whether the

singularity theorems really give evidence for the existence of physical

singularities.
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